Suppr超能文献

加权随机图的一种实用双样本检验。

A practical two-sample test for weighted random graphs.

作者信息

Yuan Mingao, Wen Qian

机构信息

Department of Statistics, North Dakota State University, Fargo, ND, USA.

出版信息

J Appl Stat. 2021 Feb 8;50(3):495-511. doi: 10.1080/02664763.2021.1884847. eCollection 2023.

Abstract

Network (graph) data analysis is a popular research topic in statistics and machine learning. In application, one is frequently confronted with graph two-sample hypothesis testing where the goal is to test the difference between two graph populations. Several statistical tests have been devised for this purpose in the context of binary graphs. However, many of the practical networks are weighted and existing procedures cannot be directly applied to weighted graphs. In this paper, we study the weighted graph two-sample hypothesis testing problem and propose a practical test statistic. We prove that the proposed test statistic converges in distribution to the standard normal distribution under the null hypothesis and analyze its power theoretically. The simulation study shows that the proposed test has satisfactory performance and it substantially outperforms the existing counterpart in the binary graph case. A real data application is provided to illustrate the method.

摘要

网络(图)数据分析是统计学和机器学习中一个热门的研究课题。在应用中,人们经常会遇到图两样本假设检验问题,其目标是检验两个图总体之间的差异。在二元图的背景下,已经为此设计了几种统计检验方法。然而,许多实际网络是加权的,现有的方法不能直接应用于加权图。在本文中,我们研究加权图两样本假设检验问题,并提出一种实用的检验统计量。我们证明了在原假设下,所提出的检验统计量在分布上收敛于标准正态分布,并从理论上分析了它的功效。模拟研究表明,所提出的检验具有令人满意的性能,并且在二元图情况下,它大大优于现有的对应方法。提供了一个实际数据应用示例来说明该方法。

相似文献

1
A practical two-sample test for weighted random graphs.加权随机图的一种实用双样本检验。
J Appl Stat. 2021 Feb 8;50(3):495-511. doi: 10.1080/02664763.2021.1884847. eCollection 2023.
4
Topic Model for Graph Mining.图挖掘的主题模型。
IEEE Trans Cybern. 2015 Dec;45(12):2792-803. doi: 10.1109/TCYB.2014.2386282. Epub 2015 Jan 20.
5
Smoothed Nested Testing on Directed Acyclic Graphs.有向无环图上的平滑嵌套测试
Biometrika. 2022 Jun;109(2):457-471. doi: 10.1093/biomet/asab041. Epub 2021 Jul 2.
9
Assessing statistical significance in causal graphs.评估因果图中的统计显著性。
BMC Bioinformatics. 2012 Feb 20;13:35. doi: 10.1186/1471-2105-13-35.
10

本文引用的文献

1
NETWORK CLASSIFICATION WITH APPLICATIONS TO BRAIN CONNECTOMICS.网络分类及其在脑连接组学中的应用
Ann Appl Stat. 2019 Sep;13(3):1648-1677. doi: 10.1214/19-AOAS1252. Epub 2019 Oct 17.
3
Introduction to network analysis in systems biology.系统生物学中的网络分析简介。
Sci Signal. 2011 Sep 6;4(190):tr5. doi: 10.1126/scisignal.2001965.
6
Coauthorship networks and patterns of scientific collaboration.共同作者网络与科学合作模式。
Proc Natl Acad Sci U S A. 2004 Apr 6;101 Suppl 1(Suppl 1):5200-5. doi: 10.1073/pnas.0307545100. Epub 2004 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验