Suppr超能文献

一种用于识别复杂感染的预测模型。

A Predictive Model to Identify Complicated Infection.

作者信息

Berinstein Jeffrey A, Steiner Calen A, Rifkin Samara, Alexander Perry D, Micic Dejan, Shirley Daniel, Higgins Peter D R, Young Vincent B, Lee Allen, Rao Krishna

机构信息

Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA.

Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.

出版信息

Open Forum Infect Dis. 2023 Feb 2;10(2):ofad049. doi: 10.1093/ofid/ofad049. eCollection 2023 Feb.

Abstract

BACKGROUND

infection (CDI) is a leading cause of health care-associated infection and may result in organ dysfunction, colectomy, and death. Published risk scores to predict severe complications from CDI demonstrate poor performance upon external validation. We hypothesized that building and validating a model using geographically and temporally distinct cohorts would more accurately predict risk for complications from CDI.

METHODS

We conducted a multicenter retrospective cohort study of adults diagnosed with CDI. After randomly partitioning the data into training and validation sets, we developed and compared 3 machine learning algorithms (lasso regression, random forest, stacked ensemble) with 10-fold cross-validation to predict disease-related complications (intensive care unit admission, colectomy, or death attributable to CDI) within 30 days of diagnosis. Model performance was assessed using the area under the receiver operating curve (AUC).

RESULTS

A total of 3646 patients with CDI were included, of whom 217 (6%) had complications. All 3 models performed well (AUC, 0.88-0.89). Variables of importance were similar across models, including albumin, bicarbonate, change in creatinine, non-CDI-related intensive care unit admission, and concomitant non-CDI antibiotics. Sensitivity analyses indicated that model performance was robust even when varying derivation cohort inclusion and CDI testing approach. However, race was an important modifier, with models showing worse performance in non-White patients.

CONCLUSIONS

Using a large heterogeneous population of patients, we developed and validated a prediction model that estimates risk for complications from CDI with good accuracy. Future studies should aim to reduce the disparity in model accuracy between White and non-White patients and to improve performance overall.

摘要

背景

艰难梭菌感染(CDI)是医疗保健相关感染的主要原因,可能导致器官功能障碍、结肠切除术和死亡。已发表的预测CDI严重并发症的风险评分在外部验证时表现不佳。我们假设使用地理和时间上不同的队列构建和验证模型将更准确地预测CDI并发症的风险。

方法

我们对诊断为CDI的成年人进行了一项多中心回顾性队列研究。在将数据随机分为训练集和验证集后,我们开发并比较了3种机器学习算法(套索回归、随机森林、堆叠集成)与10倍交叉验证,以预测诊断后30天内与疾病相关的并发症(重症监护病房入院、结肠切除术或CDI所致死亡)。使用受试者工作特征曲线下面积(AUC)评估模型性能。

结果

共纳入3646例CDI患者,其中217例(6%)出现并发症。所有3个模型表现良好(AUC为0.88 - 0.89)。各模型中重要变量相似,包括白蛋白、碳酸氢盐、肌酐变化、非CDI相关的重症监护病房入院以及同时使用的非CDI抗生素。敏感性分析表明,即使改变推导队列纳入和CDI检测方法,模型性能仍然稳健。然而,种族是一个重要的修正因素,模型在非白人患者中表现较差。

结论

通过使用大量异质性患者群体,我们开发并验证了一个预测模型,该模型能准确估计CDI并发症的风险。未来的研究应旨在减少白人和非白人患者之间模型准确性的差异,并总体上提高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/796e/9938520/bba8ac2f2a7d/ofad049f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验