Department of Ophthalmology, Saneikai Tsukazaki Hospital, Himeji, Japan.
Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
JAMA Ophthalmol. 2023 Apr 1;141(4):305-313. doi: 10.1001/jamaophthalmol.2022.6393.
There is no widespread effective treatment to halt the progression of retinitis pigmentosa. Consequently, adequate assessment and estimation of residual visual function are important clinically.
To examine whether deep learning can accurately estimate the visual function of patients with retinitis pigmentosa by using ultra-widefield fundus images obtained on concurrent visits.
DESIGN, SETTING, AND PARTICIPANTS: Data for this multicenter, retrospective, cross-sectional study were collected between January 1, 2012, and December 31, 2018. This study included 695 consecutive patients with retinitis pigmentosa who were examined at 5 institutions. Each of the 3 types of input images-ultra-widefield pseudocolor images, ultra-widefield fundus autofluorescence images, and both ultra-widefield pseudocolor and fundus autofluorescence images-was paired with 1 of the 31 types of ensemble models constructed from 5 deep learning models (Visual Geometry Group-16, Residual Network-50, InceptionV3, DenseNet121, and EfficientNetB0). We used 848, 212, and 214 images for the training, validation, and testing data, respectively. All data from 1 institution were used for the independent testing data. Data analysis was performed from June 7, 2021, to December 5, 2022.
The mean deviation on the Humphrey field analyzer, central retinal sensitivity, and best-corrected visual acuity were estimated. The image type-ensemble model combination that yielded the smallest mean absolute error was defined as the model with the best estimation accuracy. After removal of the bias of including both eyes with the generalized linear mixed model, correlations between the actual values of the testing data and the estimated values by the best accuracy model were examined by calculating standardized regression coefficients and P values.
The study included 1274 eyes of 695 patients. A total of 385 patients were female (55.4%), and the mean (SD) age was 53.9 (17.2) years. Among the 3 types of images, the model using ultra-widefield fundus autofluorescence images alone provided the best estimation accuracy for mean deviation, central sensitivity, and visual acuity. Standardized regression coefficients were 0.684 (95% CI, 0.567-0.802) for the mean deviation estimation, 0.697 (95% CI, 0.590-0.804) for the central sensitivity estimation, and 0.309 (95% CI, 0.187-0.430) for the visual acuity estimation (all P < .001).
Results of this study suggest that the visual function estimation in patients with retinitis pigmentosa from ultra-widefield fundus autofluorescence images using deep learning might help assess disease progression objectively. Findings also suggest that deep learning models might monitor the progression of retinitis pigmentosa efficiently during follow-up.
目前尚无广泛有效的治疗方法来阻止色素性视网膜炎的进展。因此,临床上对残余视力进行充分的评估和估计非常重要。
通过使用在同期就诊时获得的超广角眼底图像,检查深度学习是否可以准确估计色素性视网膜炎患者的视觉功能。
设计、地点和参与者:本多中心、回顾性、横断面研究的数据于 2012 年 1 月 1 日至 2018 年 12 月 31 日收集。这项研究包括在 5 个机构接受检查的 695 例连续的色素性视网膜炎患者。3 种输入图像(超广角假彩色图像、超广角眼底自发荧光图像和超广角假彩色及自发荧光图像)中的每一种都与从 5 种深度学习模型(视觉几何组-16、残差网络-50、InceptionV3、DenseNet121 和 EfficientNetB0)构建的 31 种集合模型中的 1 种配对。我们分别使用 848、212 和 214 张图像进行训练、验证和测试数据。一个机构的所有数据都用于独立的测试数据。数据分析于 2021 年 6 月 7 日至 2022 年 12 月 5 日进行。
估计了 Humphrey 视野分析仪的平均偏差、中心视网膜敏感度和最佳矫正视力。定义均方误差最小的图像-集合模型组合为具有最佳估计准确性的模型。在使用广义线性混合模型去除包括双眼的偏差后,通过计算标准化回归系数和 P 值,检查最佳精度模型对测试数据实际值的估计值之间的相关性。
这项研究包括 695 例患者的 1274 只眼。共有 385 名女性(55.4%),平均(SD)年龄为 53.9(17.2)岁。在 3 种图像中,仅使用超广角眼底自发荧光图像的模型对平均偏差、中心敏感度和视力的估计提供了最佳的准确性。平均偏差估计的标准化回归系数为 0.684(95%CI,0.567-0.802),中心敏感度估计为 0.697(95%CI,0.590-0.804),视力估计为 0.309(95%CI,0.187-0.430)(均 P<0.001)。
这项研究的结果表明,深度学习从超广角眼底自发荧光图像估计色素性视网膜炎患者的视觉功能可能有助于客观评估疾病的进展。研究结果还表明,深度学习模型可能在随访期间有效地监测色素性视网膜炎的进展。