Suppr超能文献

使用深度学习和多模态眼底图像预测色素性视网膜炎的视力障碍。

Prediction of visual impairment in retinitis pigmentosa using deep learning and multimodal fundus images.

机构信息

Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA.

Department of Ophthalmology, University of Maryland Medical System, Baltimore, Maryland, USA.

出版信息

Br J Ophthalmol. 2023 Oct;107(10):1484-1489. doi: 10.1136/bjo-2021-320897. Epub 2022 Jul 27.

Abstract

BACKGROUND

The efficiency of clinical trials for retinitis pigmentosa (RP) treatment is limited by the screening burden and lack of reliable surrogate markers for functional end points. Automated methods to determine visual acuity (VA) may help address these challenges. We aimed to determine if VA could be estimated using confocal scanning laser ophthalmoscopy (cSLO) imaging and deep learning (DL).

METHODS

Snellen corrected VA and cSLO imaging were obtained retrospectively. The Johns Hopkins University (JHU) dataset was used for 10-fold cross-validations and internal testing. The Amsterdam University Medical Centers (AUMC) dataset was used for external independent testing. Both datasets had the same exclusion criteria: visually significant media opacities and images not centred on the central macula. The JHU dataset included patients with RP with and without molecular confirmation. The AUMC dataset only included molecularly confirmed patients with RP. Using transfer learning, three versions of the ResNet-152 neural network were trained: infrared (IR), optical coherence tomography (OCT) and combined image (CI).

RESULTS

In internal testing (JHU dataset, 2569 images, 462 eyes, 231 patients), the area under the curve (AUC) for the binary classification task of distinguishing between Snellen VA 20/40 or better and worse than Snellen VA 20/40 was 0.83, 0.87 and 0.85 for IR, OCT and CI, respectively. In external testing (AUMC dataset, 349 images, 166 eyes, 83 patients), the AUC was 0.78, 0.87 and 0.85 for IR, OCT and CI, respectively.

CONCLUSIONS

Our algorithm showed robust performance in predicting visual impairment in patients with RP, thus providing proof-of-concept for predicting structure-function correlation based solely on cSLO imaging in patients with RP.

摘要

背景

视网膜色素变性(RP)治疗的临床试验效率受到筛查负担和缺乏可靠的功能终点替代标志物的限制。自动确定视力(VA)的方法可能有助于解决这些挑战。我们旨在确定是否可以使用共焦扫描激光检眼镜(cSLO)成像和深度学习(DL)来估计 VA。

方法

回顾性获得 Snellen 矫正 VA 和 cSLO 成像。约翰霍普金斯大学(JHU)数据集用于 10 折交叉验证和内部测试。阿姆斯特丹大学医学中心(AUMC)数据集用于外部独立测试。两个数据集都有相同的排除标准:视觉上明显的介质混浊和图像未中心化在中央黄斑上。JHU 数据集包括有和没有分子证实的 RP 患者。AUMC 数据集仅包括分子证实的 RP 患者。使用迁移学习,训练了三个版本的 ResNet-152 神经网络:红外(IR),光学相干断层扫描(OCT)和组合图像(CI)。

结果

在内部测试(JHU 数据集,2569 张图像,462 只眼,231 例患者)中,用于区分 Snellen VA 20/40 或更好和比 Snellen VA 20/40 差的二进制分类任务的曲线下面积(AUC)分别为 0.83、0.87 和 0.85。在外部测试(AUMC 数据集,349 张图像,166 只眼,83 例患者)中,AUC 分别为 0.78、0.87 和 0.85。

结论

我们的算法在预测 RP 患者的视力障碍方面表现出稳健的性能,从而为仅基于 RP 患者的 cSLO 成像预测结构-功能相关性提供了概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8bd/10579177/cabfb14648d0/bjo-2021-320897f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验