Suppr超能文献

连接组生成模型的参数估计:准确性、可靠性以及一种快速参数拟合方法。

Parameter estimation for connectome generative models: Accuracy, reliability, and a fast parameter fitting method.

作者信息

Liu Yuanzhe, Seguin Caio, Mansour Sina, Oldham Stuart, Betzel Richard, Di Biase Maria A, Zalesky Andrew

机构信息

Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.

Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.

出版信息

Neuroimage. 2023 Apr 15;270:119962. doi: 10.1016/j.neuroimage.2023.119962. Epub 2023 Feb 22.

Abstract

Generative models of the human connectome enable in silico generation of brain networks based on probabilistic wiring rules. These wiring rules are governed by a small number of parameters that are typically fitted to individual connectomes and quantify the extent to which geometry and topology shape the generative process. A significant shortcoming of generative modeling in large cohort studies is that parameter estimation is computationally burdensome, and the accuracy and reliability of current estimation methods remain untested. Here, we propose a fast, reliable, and accurate parameter estimation method for connectome generative models that is scalable to large sample sizes. Our method achieves improved estimation accuracy and reliability and reduces computational cost by orders of magnitude, compared to established methods. We demonstrate an inherent tradeoff between accuracy, reliability, and computational expense in parameter estimation and provide recommendations for leveraging this tradeoff. To enable power analyses in future studies, we empirically approximate the minimum sample size required to detect between-group differences in generative model parameters. While we focus on the classic two-parameter generative model based on connection length and the topological matching index, our method can be generalized to other growth-based generative models. Our work provides a statistical and practical guide to parameter estimation for connectome generative models.

摘要

人类连接组的生成模型能够基于概率布线规则在计算机上生成脑网络。这些布线规则由少数参数控制,这些参数通常拟合到个体连接组,并量化几何形状和拓扑结构对生成过程的影响程度。在大型队列研究中,生成建模的一个显著缺点是参数估计计算量大,并且当前估计方法的准确性和可靠性仍未得到检验。在此,我们提出了一种用于连接组生成模型的快速、可靠且准确的参数估计方法,该方法可扩展到大型样本量。与现有方法相比,我们的方法提高了估计的准确性和可靠性,并将计算成本降低了几个数量级。我们展示了参数估计中准确性、可靠性和计算成本之间的内在权衡,并提供了利用这种权衡的建议。为了在未来的研究中进行功效分析,我们通过实证方法估算了检测生成模型参数组间差异所需的最小样本量。虽然我们专注于基于连接长度和拓扑匹配指数的经典双参数生成模型,但我们的方法可以推广到其他基于生长的生成模型。我们的工作为连接组生成模型的参数估计提供了统计和实践指南。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验