Liu Yuanzhe, Seguin Caio, Betzel Richard F, Han Daniel, Akarca Danyal, Di Biase Maria A, Zalesky Andrew
Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.
Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.
Netw Neurosci. 2024 Dec 10;8(4):1192-1211. doi: 10.1162/netn_a_00397. eCollection 2024.
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones. This simple dynamic growth mechanism, despite being solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry and features of complex network architecture consistent with the human brain, including lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and modularity. We demonstrate that our model parameters can be fitted to individual connectomes, enabling connectome dimensionality reduction and comparison of parameters between groups. Our work offers an opportunity to bridge studies of axon guidance and connectome development, providing new avenues for understanding neural development from a computational perspective.
连接组生成模型,也被称为生成网络模型,能够深入了解支撑脑网络组织的布线原则。虽然这些模型可以近似经验网络的众多统计特性,但它们通常无法明确表征对脑组织有重要贡献的因素——轴突生长。通过模拟化学亲和性引导的轴突生长,我们提供了一种新颖的生成模型,其中轴突基于作用于其生长锥的距离依赖性化学吸引力动态引导传播方向。这种简单的动态生长机制尽管仅依赖于几何形状,但被证明能够生成具有类似大脑几何形状和与人类大脑一致的复杂网络架构特征的轴突纤维束,包括对数正态分布的连接权重、无标度节点度、小世界特性和模块化。我们证明我们的模型参数可以拟合到个体连接组,实现连接组降维和组间参数比较。我们的工作为弥合轴突导向和连接组发育的研究提供了机会,从计算角度为理解神经发育提供了新途径。