Suppr超能文献

基于斯格明子的多数逻辑门:通过纳米磁器件中的电压控制磁各向异性实现

Skyrmion based majority logic gate by voltage controlled magnetic anisotropy in a nanomagnetic device.

作者信息

Paikaray Bibekananda, Kuchibhotla Mahathi, Haldar Arabinda, Murapaka Chandrasekhar

机构信息

Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India.

Department of Physics, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India.

出版信息

Nanotechnology. 2023 Mar 14;34(22). doi: 10.1088/1361-6528/acbeb3.

Abstract

Magnetic skyrmions are topologically protected spin textures and they are suitable for future logic-in-memory applications for energy-efficient, high-speed information processing and computing technologies. In this work, we have demonstrated skyrmion-based 3 bit majority logic gate using micromagnetic simulations. The skyrmion motion is controlled by introducing athat works on voltage controlled magnetic anisotropy. Here, the inhomogeneous magnetic anisotropy behaves as a tunable potential barrier/well that modulates the skyrmion trajectory in the structure for the successful implementation of the majority logic gate. In addition, several other effects such as skyrmion-skyrmion topological repulsion, skyrmion-edge repulsion, spin-orbit torque and skyrmion Hall effect have been shown to govern the logic functionalities. We have systematically presented the robust logic operations by varying the current density, magnetic anisotropy, voltage-controlled gate dimension and geometrical parameters of the logic device. The skyrmion Hall angle is monitored to understand the trajectory and stability of the skyrmion as a function of time in the logic device. The results demonstrate a novel method to achieve majority logic by using voltage controlled magnetic anisotropy which further opens up a new route for skyrmion-based low-power and high-speed computing devices.

摘要

磁斯格明子是具有拓扑保护的自旋纹理,适用于未来的逻辑-内存应用,以实现节能、高速的信息处理和计算技术。在这项工作中,我们利用微磁模拟演示了基于斯格明子的3比特多数逻辑门。通过引入一个作用于电压控制磁各向异性的[此处原文缺失“a”后的内容]来控制斯格明子的运动。在这里,非均匀磁各向异性表现为一个可调的势垒/势阱,它调制结构中斯格明子的轨迹,以成功实现多数逻辑门。此外,还表明了其他几种效应,如斯格明子-斯格明子拓扑排斥、斯格明子-边缘排斥、自旋轨道转矩和斯格明子霍尔效应,对逻辑功能起支配作用。我们通过改变逻辑器件的电流密度、磁各向异性、电压控制栅极尺寸和几何参数,系统地展示了稳健的逻辑操作。监测斯格明子霍尔角,以了解逻辑器件中斯格明子作为时间函数的轨迹和稳定性。结果表明了一种利用电压控制磁各向异性实现多数逻辑的新方法,这进一步为基于斯格明子的低功耗和高速计算器件开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验