Institute of Molecular Biology and Biophysics, ETH Zurich , CH-8093 Zurich, Switzerland.
Biochemistry. 2014 Mar 25;53(11):1870-7. doi: 10.1021/bi401725j. Epub 2014 Mar 13.
Bacterial aryl sulfotransferases (ASSTs) catalyze sulfotransfer from a phenolic sulfate to a phenol. These enzymes are frequently found in pathogens and upregulated during infection. Their mechanistic understanding is very limited, and their natural substrates are unknown. Here, the crystal structures of Escherichia coli CFT073 ASST trapped in its presulfurylation state with model donor substrates bound in the active site are reported, which reveal the molecular interactions governing substrate recognition. Furthermore, spectroscopic titrations with donor substrates and sulfurylation kinetics of ASST illustrate that this enzyme binds substrates in a 1:1 stoichiometry and that the active sites of the ASST homooligomer act independently. Mass spectrometry and crystallographic experiments of ASST incubated with human urine demonstrate that urine contains a sulfuryl donor substrate. In addition, we examined the capability of the two paralogous dithiol oxidases present in uropathogenic E. coli CFT073, DsbA, and the ASST-specific enzyme DsbL, to introduce the single, conserved disulfide bond into ASST. We show that DsbA and DsbL introduce the disulfide bond into unfolded ASST at similar rates. Hence, a chaperone effect of DsbL, not present in DsbA, appears to be responsible for the dependence of efficient ASST folding on DsbL in vivo. The conservation of paralogous dithiol oxidases with different substrate specificities in certain bacterial strains may therefore be a consequence of the complex folding pathways of their substrate proteins.
细菌芳基磺基转移酶 (ASST) 催化从酚硫酸盐向酚的磺基转移。这些酶通常存在于病原体中,并在感染期间上调。它们的机制理解非常有限,其天然底物也未知。本文报道了大肠杆菌 CFT073 ASST 的晶体结构,该结构被捕获在其预磺化状态,模型供体底物结合在活性部位,揭示了控制底物识别的分子相互作用。此外,用供体底物进行光谱滴定和 ASST 的磺化动力学表明,该酶以 1:1 的化学计量比结合底物,并且 ASST 同源寡聚体的活性部位独立起作用。ASST 与人体尿液孵育的质谱和晶体学实验表明,尿液中含有磺基供体底物。此外,我们研究了存在于尿路致病性大肠杆菌 CFT073 中的两种同工型二硫键氧化酶 DsbA 和 ASST 特异性酶 DsbL 将单个保守二硫键引入 ASST 的能力。我们表明,DsbA 和 DsbL 以相似的速度将二硫键引入未折叠的 ASST 中。因此,DsbL 而不是 DsbA 中的伴侣效应似乎负责体内 ASST 折叠对 DsbL 的依赖性。某些细菌菌株中具有不同底物特异性的同工型二硫键氧化酶的保守性可能是其底物蛋白复杂折叠途径的结果。