Tummala Sudhakar, Thadikemalla Venkata Sainath Gupta, Kadry Seifedine, Sharaf Mohamed, Rauf Hafiz Tayyab
Department of Electronics and Communication Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati 522240, Andhra Pradesh, India.
Department of Electronics and Communication Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada 520007, Andhra Pradesh, India.
Diagnostics (Basel). 2023 Feb 8;13(4):622. doi: 10.3390/diagnostics13040622.
Diabetic retinopathy (DR) is one of the major complications caused by diabetes and is usually identified from retinal fundus images. Screening of DR from digital fundus images could be time-consuming and error-prone for ophthalmologists. For efficient DR screening, good quality of the fundus image is essential and thereby reduces diagnostic errors. Hence, in this work, an automated method for quality estimation (QE) of digital fundus images using an ensemble of recent state-of-the-art deep neural network models is proposed. The ensemble method was cross-validated and tested on one of the largest openly available datasets, the Deep Diabetic Retinopathy Image Dataset (DeepDRiD). We obtained a test accuracy of 75% for the QE, outperforming the existing methods on the DeepDRiD. Hence, the proposed ensemble method may be a potential tool for automated QE of fundus images and could be handy to ophthalmologists.
糖尿病视网膜病变(DR)是糖尿病引发的主要并发症之一,通常可通过视网膜眼底图像识别出来。对于眼科医生而言,从数字眼底图像中筛查DR既耗时又容易出错。为了实现高效的DR筛查,高质量的眼底图像至关重要,从而可减少诊断错误。因此,在这项工作中,提出了一种使用最新的深度神经网络模型集成的数字眼底图像质量评估(QE)自动化方法。该集成方法在最大的公开可用数据集之一——深度糖尿病视网膜病变图像数据集(DeepDRiD)上进行了交叉验证和测试。我们在QE方面获得了75%的测试准确率,优于DeepDRiD上的现有方法。因此,所提出的集成方法可能是一种用于眼底图像自动QE的潜在工具,对眼科医生来说可能会很方便。
Diagnostics (Basel). 2023-2-8
Patterns (N Y). 2022-5-20
J Formos Med Assoc. 2021-1
Phys Eng Sci Med. 2021-12
Biomed Tech (Berl). 2019-5-27
Clin Ophthalmol. 2019-4-17
Diagnostics (Basel). 2023-4-29
Patterns (N Y). 2022-5-20
Multimed Syst. 2022
Comput Biol Med. 2021-2
Int J Mol Sci. 2018-6-20
Annu Int Conf IEEE Eng Med Biol Soc. 2017-7
Diabetes Res Clin Pract. 2017-6
Comput Biol Med. 2016-4-1