文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于EfficientNetV2的深度糖尿病视网膜病变图像数据集(DeepDRiD)糖尿病视网膜病变图像质量评估集成模型

EfficientNetV2 Based Ensemble Model for Quality Estimation of Diabetic Retinopathy Images from DeepDRiD.

作者信息

Tummala Sudhakar, Thadikemalla Venkata Sainath Gupta, Kadry Seifedine, Sharaf Mohamed, Rauf Hafiz Tayyab

机构信息

Department of Electronics and Communication Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati 522240, Andhra Pradesh, India.

Department of Electronics and Communication Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada 520007, Andhra Pradesh, India.

出版信息

Diagnostics (Basel). 2023 Feb 8;13(4):622. doi: 10.3390/diagnostics13040622.


DOI:10.3390/diagnostics13040622
PMID:36832110
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9955381/
Abstract

Diabetic retinopathy (DR) is one of the major complications caused by diabetes and is usually identified from retinal fundus images. Screening of DR from digital fundus images could be time-consuming and error-prone for ophthalmologists. For efficient DR screening, good quality of the fundus image is essential and thereby reduces diagnostic errors. Hence, in this work, an automated method for quality estimation (QE) of digital fundus images using an ensemble of recent state-of-the-art deep neural network models is proposed. The ensemble method was cross-validated and tested on one of the largest openly available datasets, the Deep Diabetic Retinopathy Image Dataset (DeepDRiD). We obtained a test accuracy of 75% for the QE, outperforming the existing methods on the DeepDRiD. Hence, the proposed ensemble method may be a potential tool for automated QE of fundus images and could be handy to ophthalmologists.

摘要

糖尿病视网膜病变(DR)是糖尿病引发的主要并发症之一,通常可通过视网膜眼底图像识别出来。对于眼科医生而言,从数字眼底图像中筛查DR既耗时又容易出错。为了实现高效的DR筛查,高质量的眼底图像至关重要,从而可减少诊断错误。因此,在这项工作中,提出了一种使用最新的深度神经网络模型集成的数字眼底图像质量评估(QE)自动化方法。该集成方法在最大的公开可用数据集之一——深度糖尿病视网膜病变图像数据集(DeepDRiD)上进行了交叉验证和测试。我们在QE方面获得了75%的测试准确率,优于DeepDRiD上的现有方法。因此,所提出的集成方法可能是一种用于眼底图像自动QE的潜在工具,对眼科医生来说可能会很方便。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e9/9955381/e7aa83c8f27c/diagnostics-13-00622-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e9/9955381/3660e90d4639/diagnostics-13-00622-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e9/9955381/8f9a1b56aba7/diagnostics-13-00622-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e9/9955381/954307557e22/diagnostics-13-00622-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e9/9955381/e7aa83c8f27c/diagnostics-13-00622-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e9/9955381/3660e90d4639/diagnostics-13-00622-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e9/9955381/8f9a1b56aba7/diagnostics-13-00622-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e9/9955381/954307557e22/diagnostics-13-00622-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e9/9955381/e7aa83c8f27c/diagnostics-13-00622-g004.jpg

相似文献

[1]
EfficientNetV2 Based Ensemble Model for Quality Estimation of Diabetic Retinopathy Images from DeepDRiD.

Diagnostics (Basel). 2023-2-8

[2]
DeepDRiD: Diabetic Retinopathy-Grading and Image Quality Estimation Challenge.

Patterns (N Y). 2022-5-20

[3]
Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening.

J Formos Med Assoc. 2021-1

[4]
Automated identification of diabetic retinopathy stages using digital fundus images.

J Med Syst. 2008-4

[5]
Deploying efficient net batch normalizations (BNs) for grading diabetic retinopathy severity levels from fundus images.

Sci Rep. 2023-9-2

[6]
A novel four-step feature selection technique for diabetic retinopathy grading.

Phys Eng Sci Med. 2021-12

[7]
Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images.

Diagnostics (Basel). 2022-8-15

[8]
Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).

Biomed Tech (Berl). 2019-5-27

[9]
Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques.

Sensors (Basel). 2022-2-24

[10]
Digital image processing software for diagnosing diabetic retinopathy from fundus photograph.

Clin Ophthalmol. 2019-4-17

引用本文的文献

[1]
An Explainable Classification Method Based on Complex Scaling in Histopathology Images for Lung and Colon Cancer.

Diagnostics (Basel). 2023-4-29

本文引用的文献

[1]
Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling.

Curr Oncol. 2022-10-7

[2]
Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions.

Sensors (Basel). 2022-9-8

[3]
DeepDRiD: Diabetic Retinopathy-Grading and Image Quality Estimation Challenge.

Patterns (N Y). 2022-5-20

[4]
Assessment of image quality on color fundus retinal images using the automatic retinal image analysis.

Sci Rep. 2022-6-21

[5]
A holistic overview of deep learning approach in medical imaging.

Multimed Syst. 2022

[6]
Automatic fundus image quality assessment on a continuous scale.

Comput Biol Med. 2021-2

[7]
Diabetic Retinopathy: Pathophysiology and Treatments.

Int J Mol Sci. 2018-6-20

[8]
Image quality classification for DR screening using deep learning.

Annu Int Conf IEEE Eng Med Biol Soc. 2017-7

[9]
IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040.

Diabetes Res Clin Pract. 2017-6

[10]
Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies.

Comput Biol Med. 2016-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索