Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54000, Pakistan.
Division of Science and Technology, University of Education, Lahore 54000, Pakistan.
Sensors (Basel). 2022 Feb 24;22(5):1803. doi: 10.3390/s22051803.
Diabetic Retinopathy (DR) is a predominant cause of visual impairment and loss. Approximately 285 million worldwide population is affected with diabetes, and one-third of these patients have symptoms of DR. Specifically, it tends to affect the patients with 20 years or more with diabetes, but it can be reduced by early detection and proper treatment. Diagnosis of DR by using manual methods is a time-consuming and expensive task which involves trained ophthalmologists to observe and evaluate DR using digital fundus images of the retina. This study aims to systematically find and analyze high-quality research work for the diagnosis of DR using deep learning approaches. This research comprehends the DR grading, staging protocols and also presents the DR taxonomy. Furthermore, identifies, compares, and investigates the deep learning-based algorithms, techniques, and, methods for classifying DR stages. Various publicly available dataset used for deep learning have also been analyzed and dispensed for descriptive and empirical understanding for real-time DR applications. Our in-depth study shows that in the last few years there has been an increasing inclination towards deep learning approaches. 35% of the studies have used Convolutional Neural Networks (CNNs), 26% implemented the Ensemble CNN (ECNN) and, 13% Deep Neural Networks (DNN) are amongst the most used algorithms for the DR classification. Thus using the deep learning algorithms for DR diagnostics have future research potential for DR early detection and prevention based solution.
糖尿病视网膜病变(DR)是视力损害和丧失的主要原因。全球约有 2.85 亿人患有糖尿病,其中三分之一的患者有 DR 症状。具体来说,它往往会影响患病 20 年或以上的患者,但通过早期发现和适当治疗可以减少这种情况的发生。使用手动方法诊断 DR 是一项耗时且昂贵的任务,需要经过培训的眼科医生使用视网膜数字眼底图像来观察和评估 DR。本研究旨在系统地寻找和分析使用深度学习方法诊断 DR 的高质量研究工作。本研究包括 DR 分级、分期方案,并介绍了 DR 分类法。此外,还确定、比较和研究了基于深度学习的用于分类 DR 阶段的算法、技术和方法。还分析了各种用于深度学习的公开可用数据集,并进行了描述性和实证研究,以了解实时 DR 应用的情况。我们的深入研究表明,在过去几年中,人们对深度学习方法的兴趣日益浓厚。35%的研究使用了卷积神经网络(CNN),26%的研究使用了集成 CNN(ECNN),13%的研究使用了深度神经网络(DNN),是用于 DR 分类的最常用算法之一。因此,使用深度学习算法进行 DR 诊断具有基于 DR 早期检测和预防的未来研究潜力。