文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于组织病理学图像中复变缩放的肺癌和结肠癌可解释分类方法。

An Explainable Classification Method Based on Complex Scaling in Histopathology Images for Lung and Colon Cancer.

作者信息

Tummala Sudhakar, Kadry Seifedine, Nadeem Ahmed, Rauf Hafiz Tayyab, Gul Nadia

机构信息

Department of Electronics and Communication Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati 522240, Andhra Pradesh, India.

Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway.

出版信息

Diagnostics (Basel). 2023 Apr 29;13(9):1594. doi: 10.3390/diagnostics13091594.


DOI:10.3390/diagnostics13091594
PMID:37174985
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10178684/
Abstract

Lung and colon cancers are among the leading causes of human mortality and morbidity. Early diagnostic work up of these diseases include radiography, ultrasound, magnetic resonance imaging, and computed tomography. Certain blood tumor markers for carcinoma lung and colon also aid in the diagnosis. Despite the lab and diagnostic imaging, histopathology remains the gold standard, which provides cell-level images of tissue under examination. To read these images, a histopathologist spends a large amount of time. Furthermore, using conventional diagnostic methods involve high-end equipment as well. This leads to limited number of patients getting final diagnosis and early treatment. In addition, there are chances of inter-observer errors. In recent years, deep learning has shown promising results in the medical field. This has helped in early diagnosis and treatment according to severity of disease. With the help of models that have been cross-validated and tested fivefold, we propose an automated method for detecting lung (lung adenocarcinoma, lung benign, and lung squamous cell carcinoma) and colon (colon adenocarcinoma and colon benign) cancer subtypes from LC25000 histopathology images. A state-of-the-art deep learning architecture based on the principles of compound scaling and progressive learning, large, medium, and small models. An accuracy of 99.97%, AUC of 99.99%, F1-score of 99.97%, balanced accuracy of 99.97%, and Matthew's correlation coefficient of 99.96% were obtained on the test set using the -L model for the 5-class classification of lung and colon cancers, outperforming the existing methods. Using gradCAM, we created visual saliency maps to precisely locate the vital regions in the histopathology images from the test set where the models put more attention during cancer subtype predictions. This visual saliency maps may potentially assist pathologists to design better treatment strategies. Therefore, it is possible to use the proposed pipeline in clinical settings for fully automated lung and colon cancer detection from histopathology images with explainability.

摘要

肺癌和结肠癌是导致人类死亡和发病的主要原因之一。这些疾病的早期诊断检查包括放射照相、超声、磁共振成像和计算机断层扫描。某些用于肺癌和结肠癌的血液肿瘤标志物也有助于诊断。尽管有实验室检查和诊断成像,但组织病理学仍然是金标准,它能提供被检查组织的细胞水平图像。要解读这些图像,组织病理学家需要花费大量时间。此外,使用传统诊断方法还需要高端设备。这导致能够获得最终诊断和早期治疗的患者数量有限。此外,还存在观察者间误差的可能性。近年来,深度学习在医学领域显示出了有前景的结果。这有助于根据疾病严重程度进行早期诊断和治疗。借助经过五重交叉验证和测试的模型,我们提出了一种从LC25000组织病理学图像中检测肺癌(肺腺癌、肺良性和肺鳞状细胞癌)和结肠癌(结肠腺癌和结肠良性)亚型的自动化方法。一种基于复合缩放和渐进学习原则的先进深度学习架构,包括大、中、小模型。使用-L模型对肺癌和结肠癌进行5类分类时,在测试集上获得了99.97%的准确率、99.99%的AUC、99.97%的F1分数、99.97%的平衡准确率和99.96%的马修斯相关系数,优于现有方法。使用gradCAM,我们创建了视觉显著性图,以精确定位测试集中组织病理学图像中的关键区域,模型在癌症亚型预测过程中对这些区域更为关注。这种视觉显著性图可能有助于病理学家设计更好的治疗策略。因此,有可能在临床环境中使用所提出的管道,从组织病理学图像中进行具有可解释性的全自动肺癌和结肠癌检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a6/10178684/8e54172f382b/diagnostics-13-01594-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a6/10178684/212b91e3405f/diagnostics-13-01594-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a6/10178684/894c2762a99c/diagnostics-13-01594-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a6/10178684/881d3769b08f/diagnostics-13-01594-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a6/10178684/8e54172f382b/diagnostics-13-01594-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a6/10178684/212b91e3405f/diagnostics-13-01594-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a6/10178684/894c2762a99c/diagnostics-13-01594-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a6/10178684/881d3769b08f/diagnostics-13-01594-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a6/10178684/8e54172f382b/diagnostics-13-01594-g004.jpg

相似文献

[1]
An Explainable Classification Method Based on Complex Scaling in Histopathology Images for Lung and Colon Cancer.

Diagnostics (Basel). 2023-4-29

[2]
DeepHistoNet: A robust deep-learning model for the classification of hepatocellular, lung, and colon carcinoma.

Microsc Res Tech. 2024-2

[3]
Colon and lung cancer classification from multi-modal images using resilient and efficient neural network architectures.

Heliyon. 2024-5-3

[4]
Lung cancer histopathological image classification using wavelets and AlexNet.

J Xray Sci Technol. 2023

[5]
Lung Cancer Classification in Histopathology Images Using Multiresolution Efficient Nets.

Comput Intell Neurosci. 2023

[6]
A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images.

Comput Biol Med. 2022-8

[7]
LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images.

Int J Comput Assist Radiol Surg. 2021-9

[8]
Automated Lung and Colon Cancer Classification Using Histopathological Images.

Biomed Eng Comput Biol. 2024-8-14

[9]
A feature engineering-based machine learning technique to detect and classify lung and colon cancer from histopathological images.

Med Biol Eng Comput. 2024-3

[10]
Saliency-driven explainable deep learning in medical imaging: bridging visual explainability and statistical quantitative analysis.

BioData Min. 2024-6-22

引用本文的文献

[1]
An enhanced fusion of transfer learning models with optimization based clinical diagnosis of lung and colon cancer using biomedical imaging.

Sci Rep. 2025-7-7

[2]
Prognostic and therapeutic potential of copper-induced cell death-related lncRNAs in lung squamous cell carcinoma.

Clin Exp Med. 2025-5-3

[3]
Advanced deep learning for multi-class colorectal cancer histopathology: integrating transfer learning and ensemble methods.

Quant Imaging Med Surg. 2025-3-3

[4]
Advancements in Digital Cytopathology Since COVID-19: Insights from a Narrative Review of Review Articles.

Healthcare (Basel). 2025-3-17

[5]
ELW-CNN: An extremely lightweight convolutional neural network for enhancing interoperability in colon and lung cancer identification using explainable AI.

Healthc Technol Lett. 2025-1-22

[6]
Predictive analytics of complex healthcare systems using deep learning based disease diagnosis model.

Sci Rep. 2024-11-11

[7]
Secure and Transparent Lung and Colon Cancer Classification Using Blockchain and Microsoft Azure.

Adv Respir Med. 2024-10-17

[8]
Identification of Anomalies in Lung and Colon Cancer Using Computer Vision-Based Swin Transformer with Ensemble Model on Histopathological Images.

Bioengineering (Basel). 2024-9-28

[9]
Automated Lung and Colon Cancer Classification Using Histopathological Images.

Biomed Eng Comput Biol. 2024-8-14

[10]
Computer-aided colorectal cancer diagnosis: AI-driven image segmentation and classification.

PeerJ Comput Sci. 2024-5-17

本文引用的文献

[1]
EfficientNetV2 Based Ensemble Model for Quality Estimation of Diabetic Retinopathy Images from DeepDRiD.

Diagnostics (Basel). 2023-2-8

[2]
Few-shot learning using explainable Siamese twin network for the automated classification of blood cells.

Med Biol Eng Comput. 2023-6

[3]
Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks.

J Healthc Eng. 2022

[4]
A Framework for Lung and Colon Cancer Diagnosis via Lightweight Deep Learning Models and Transformation Methods.

Diagnostics (Basel). 2022-11-23

[5]
Lung and colon cancer classification using medical imaging: a feature engineering approach.

Phys Eng Sci Med. 2022-9

[6]
A holistic overview of deep learning approach in medical imaging.

Multimed Syst. 2022

[7]
Disease type detection in lung and colon cancer images using the complement approach of inefficient sets.

Comput Biol Med. 2021-10

[8]
Multi-Input Dual-Stream Capsule Network for Improved Lung and Colon Cancer Classification.

Diagnostics (Basel). 2021-8-16

[9]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[10]
.

Sensors (Basel). 2021-1-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索