Liddy Joshua, Busa Michael
Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Entropy (Basel). 2023 Feb 7;25(2):306. doi: 10.3390/e25020306.
The goal of this paper is to highlight considerations and provide recommendations for analytical issues that arise when applying entropy methods, specifically Sample Entropy (SampEn), to temporally correlated stochastic datasets, which are representative of a broad range of biomechanical and physiological variables. To simulate a variety of processes encountered in biomechanical applications, autoregressive fractionally integrated moving averaged (ARFIMA) models were used to produce temporally correlated data spanning the fractional Gaussian noise/fractional Brownian motion model. We then applied ARFIMA modeling and SampEn to the datasets to quantify the temporal correlations and regularity of the simulated datasets. We demonstrate the use of ARFIMA modeling for estimating temporal correlation properties and classifying stochastic datasets as stationary or nonstationary. We then leverage ARFIMA modeling to improve the effectiveness of data cleaning procedures and mitigate the influence of outliers on SampEn estimates. We also emphasize the limitations of SampEn to distinguish among stochastic datasets and suggest the use of complementary measures to better characterize the dynamics of biomechanical variables. Finally, we demonstrate that parameter normalization is not an effective procedure for increasing the interoperability of SampEn estimates, at least not for entirely stochastic datasets.
本文的目的是强调在将熵方法,特别是样本熵(SampEn)应用于具有时间相关性的随机数据集时出现的分析问题的注意事项并提供建议,这些数据集代表了广泛的生物力学和生理变量。为了模拟生物力学应用中遇到的各种过程,使用自回归分数整合移动平均(ARFIMA)模型来生成跨越分数高斯噪声/分数布朗运动模型的具有时间相关性的数据。然后,我们将ARFIMA建模和SampEn应用于数据集,以量化模拟数据集的时间相关性和规律性。我们展示了使用ARFIMA建模来估计时间相关特性并将随机数据集分类为平稳或非平稳。然后,我们利用ARFIMA建模来提高数据清理程序的有效性,并减轻异常值对SampEn估计的影响。我们还强调了SampEn在区分随机数据集方面的局限性,并建议使用补充措施来更好地表征生物力学变量的动态。最后,我们证明参数归一化不是提高SampEn估计互操作性的有效程序,至少对于完全随机的数据集不是。