Suppr超能文献

空间自回归地理加权回归模型的非迭代多尺度估计

Non-Iterative Multiscale Estimation for Spatial Autoregressive Geographically Weighted Regression Models.

作者信息

Gao Shi-Jie, Mei Chang-Lin, Xu Qiu-Xia, Zhang Zhi

机构信息

Department of Finance and Statistics, School of Science, Xi'an Polytechnic University, Xi'an 710048, China.

Department of Statistics, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Entropy (Basel). 2023 Feb 9;25(2):320. doi: 10.3390/e25020320.

Abstract

Multiscale estimation for geographically weighted regression (GWR) and the related models has attracted much attention due to their superiority. This kind of estimation method will not only improve the accuracy of the coefficient estimators but also reveal the underlying spatial scale of each explanatory variable. However, most of the existing multiscale estimation approaches are backfitting-based iterative procedures that are very time-consuming. To alleviate the computation complexity, we propose in this paper a non-iterative multiscale estimation method and its simplified scenario for spatial autoregressive geographically weighted regression (SARGWR) models, a kind of important GWR-related model that simultaneously takes into account spatial autocorrelation in the response variable and spatial heterogeneity in the regression relationship. In the proposed multiscale estimation methods, the two-stage least-squares (2SLS) based GWR and the local-linear GWR estimators of the regression coefficients with a shrunk bandwidth size are respectively taken to be the initial estimators to obtain the final multiscale estimators of the coefficients without iteration. A simulation study is conducted to assess the performance of the proposed multiscale estimation methods, and the results show that the proposed methods are much more efficient than the backfitting-based estimation procedure. In addition, the proposed methods can also yield accurate coefficient estimators and such variable-specific optimal bandwidth sizes that correctly reflect the underlying spatial scales of the explanatory variables. A real-life example is further provided to demonstrate the applicability of the proposed multiscale estimation methods.

摘要

地理加权回归(GWR)及相关模型的多尺度估计因其优越性而备受关注。这种估计方法不仅能提高系数估计量的准确性,还能揭示每个解释变量潜在的空间尺度。然而,现有的大多数多尺度估计方法都是基于反向拟合的迭代过程,非常耗时。为了减轻计算复杂度,本文针对空间自回归地理加权回归(SARGWR)模型(一种同时考虑响应变量中的空间自相关和回归关系中的空间异质性的重要GWR相关模型),提出了一种非迭代多尺度估计方法及其简化情形。在所提出的多尺度估计方法中,分别采用基于两阶段最小二乘法(2SLS)的GWR和具有收缩带宽大小的回归系数的局部线性GWR估计量作为初始估计量,无需迭代即可获得系数的最终多尺度估计量。进行了一项模拟研究以评估所提出的多尺度估计方法的性能,结果表明所提出的方法比基于反向拟合的估计过程效率更高。此外,所提出的方法还能产生准确的系数估计量以及能正确反映解释变量潜在空间尺度的特定变量最优带宽大小。还提供了一个实际例子来证明所提出的多尺度估计方法的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b515/9954997/8dce6ae425a9/entropy-25-00320-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验