Suppr超能文献

打开推断软件的“黑箱”,研究参考面板构成对性能的影响。

Opening the Black Box of Imputation Software to Study the Impact of Reference Panel Composition on Performance.

机构信息

Inserm, Université de Brest, EFS, UMR 1078, GGB, F-29200 Brest, France.

CHRU Brest, F-29200 Brest, France.

出版信息

Genes (Basel). 2023 Feb 4;14(2):410. doi: 10.3390/genes14020410.

Abstract

Genotype imputation is widely used to enrich genetic datasets. The operation relies on panels of known reference haplotypes, typically with whole-genome sequencing data. How to choose a reference panel has been widely studied and it is essential to have a panel that is well matched to the individuals who require missing genotype imputation. However, it is broadly accepted that such an imputation panel will have an enhanced performance with the inclusion of diversity (haplotypes from many different populations). We investigate this observation by examining, in fine detail, exactly which reference haplotypes are contributing at different regions of the genome. This is achieved using a novel method of inserting synthetic genetic variation into the reference panel in order to track the performance of leading imputation algorithms. We show that while diversity may globally improve imputation accuracy, there can be occasions where incorrect genotypes are imputed following the inclusion of more diverse haplotypes in the reference panel. We, however, demonstrate a technique for retaining and benefitting from the diversity in the reference panel whilst avoiding the occasional adverse effects on imputation accuracy. What is more, our results more clearly elucidate the role of diversity in a reference panel than has been shown in previous studies.

摘要

基因型推断被广泛应用于丰富遗传数据集。该操作依赖于已知参考单倍型的面板,通常使用全基因组测序数据。如何选择参考面板已被广泛研究,拥有与需要缺失基因型推断的个体高度匹配的面板至关重要。然而,人们普遍认为,通过包含多样性(来自许多不同人群的单倍型),这样的推断面板将具有增强的性能。我们通过详细检查基因组不同区域中哪些参考单倍型在起作用来研究这一观察结果。这是通过一种将合成遗传变异插入参考面板的新方法来实现的,以便跟踪领先的推断算法的性能。我们表明,尽管多样性可能会全局提高推断准确性,但在参考面板中包含更多多样化的单倍型后,有时会出现错误的基因型推断。然而,我们展示了一种在避免对推断准确性偶尔产生不利影响的同时保留和受益于参考面板中多样性的技术。更重要的是,我们的结果比以前的研究更清楚地阐明了参考面板中多样性的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/716b/9956390/b4c4a73a7bf8/genes-14-00410-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验