Department of Biostatistics, University of Michigan, Ann Arbor, MI 48105, USA.
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48105, USA; 23andMe, Sunnyvale, CA 94086, USA.
Am J Hum Genet. 2022 Jun 2;109(6):1007-1015. doi: 10.1016/j.ajhg.2022.04.002. Epub 2022 May 3.
Genotype imputation is an integral tool in genome-wide association studies, in which it facilitates meta-analysis, increases power, and enables fine-mapping. With the increasing availability of whole-genome-sequence datasets, investigators have access to a multitude of reference-panel choices for genotype imputation. In principle, combining all sequenced whole genomes into a single large panel would provide the best imputation performance, but this is often cumbersome or impossible due to privacy restrictions. Here, we describe meta-imputation, a method that allows imputation results generated using different reference panels to be combined into a consensus imputed dataset. Our meta-imputation method requires small changes to the output of existing imputation tools to produce necessary inputs, which are then combined using dynamically estimated weights that are tailored to each individual and genome segment. In the scenarios we examined, the method consistently outperforms imputation using a single reference panel and achieves accuracy comparable to imputation using a combined reference panel.
基因型推断是全基因组关联研究中的一个重要工具,它有助于荟萃分析、提高效能,并实现精细映射。随着全基因组测序数据集的日益普及,研究人员可以选择多种参考面板进行基因型推断。原则上,将所有测序的全基因组组合成一个单一的大型面板将提供最佳的推断性能,但由于隐私限制,这通常很麻烦或不可能。在这里,我们描述了元推断,这是一种允许使用不同参考面板生成的推断结果组合成共识推断数据集的方法。我们的元推断方法只需对现有推断工具的输出进行微小更改,以生成必要的输入,然后使用针对每个个体和基因组片段量身定制的动态估计权重进行组合。在我们检查的场景中,该方法始终优于使用单个参考面板进行推断,并达到了使用组合参考面板进行推断的可比准确性。