Suppr超能文献

基于多目标跟踪的活精子多维形态分析

Multidimensional morphological analysis of live sperm based on multiple-target tracking.

作者信息

Yang Hao, Ma Mengmeng, Chen Xiangfeng, Chen Guowu, Shen Yi, Zhao Lijun, Wang Jianfeng, Yan Feifei, Huang Difeng, Gao Huijie, Jiang Hao, Zheng Yuqian, Wang Yu, Xiao Qian, Chen Ying, Zhou Jian, Shi Jie, Guo Yi, Liang Bo, Teng Xiaoming

机构信息

Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Comput Struct Biotechnol J. 2024 Mar 1;24:176-184. doi: 10.1016/j.csbj.2024.02.025. eCollection 2024 Dec.

Abstract

Manual semen evaluation methods are subjective and time-consuming. In this study, a deep learning algorithmic framework was designed to enable non-invasive multidimensional morphological analysis of live sperm in motion, improve current clinical sperm morphology testing methods, and significantly contribute to the advancement of assisted reproductive technologies. We improved the FairMOT tracking algorithm by incorporating the distance and angle of the same sperm head movement in adjacent frames, as well as the head target detection frame IOU value, into the cost function of the Hungarian matching algorithm. For sperm morphology, we used the BlendMask segmentation method to segment individual sperm. SegNet was used to separate the head, midpiece, and principal piece comments from each sperm. Experienced in vivo sperm physicians confirmed a morphological accuracy percentage of 90.82%. A total of 1272 samples were collected from multiple tertiary hospitals for validation of the system, which were also evaluated by physicians. The results of our system were highly consistent with those of manual microscopy. This study realized the automated detection of progressive motility and morphology of sperm simultaneously, which is crucial for selection of morphologically normal and motile sperm for intracytoplasmic sperm injection.

摘要

手工精液评估方法主观且耗时。在本研究中,设计了一种深度学习算法框架,以实现对活动中活精子的非侵入性多维形态分析,改进当前临床精子形态检测方法,并为辅助生殖技术的进步做出重大贡献。我们通过将相邻帧中同一精子头部运动的距离和角度以及头部目标检测框的交并比(IOU)值纳入匈牙利匹配算法的代价函数,对FairMOT跟踪算法进行了改进。对于精子形态,我们使用BlendMask分割方法对单个精子进行分割。SegNet用于从每个精子中分离出头部、中段和主段。经验丰富的体内精子医生确认形态学准确率为90.82%。从多家三级医院收集了共1272个样本用于系统验证,这些样本也由医生进行评估。我们系统的结果与手工显微镜检查的结果高度一致。本研究实现了对精子的进行性运动能力和形态的自动检测,这对于选择形态正常且有运动能力的精子进行胞浆内单精子注射至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1984/11724762/33882e947843/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验