Suppr超能文献

基于非增强计算机断层扫描的自发性幕上脑出血手术治疗后的结局预测:一项多中心研究

Outcome Prediction of Spontaneous Supratentorial Intracerebral Hemorrhage after Surgical Treatment Based on Non-Contrast Computed Tomography: A Multicenter Study.

作者信息

Zhang Kangwei, Zhou Xiang, Xi Qian, Wang Xinyun, Yang Baoqing, Meng Jinxi, Liu Ming, Dong Ningxin, Wu Xiaofen, Song Tao, Wei Lai, Wang Peijun

机构信息

Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.

Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

出版信息

J Clin Med. 2023 Feb 16;12(4):1580. doi: 10.3390/jcm12041580.

Abstract

This study aims to explore the value of a machine learning (ML) model based on radiomics features and clinical features in predicting the outcome of spontaneous supratentorial intracerebral hemorrhage (sICH) 90 days after surgery. A total of 348 patients with sICH underwent craniotomy evacuation of hematoma from three medical centers. One hundred and eight radiomics features were extracted from sICH lesions on baseline CT. Radiomics features were screened using 12 feature selection algorithms. Clinical features included age, gender, admission Glasgow Coma Scale (GCS), intraventricular hemorrhage (IVH), midline shift (MLS), and deep ICH. Nine ML models were constructed based on clinical feature, and clinical features + radiomics features, respectively. Grid search was performed on different combinations of feature selection and ML model for parameter tuning. The averaged receiver operating characteristics (ROC) area under curve (AUC) was calculated and the model with the largest AUC was selected. It was then tested using multicenter data. The combination of lasso regression feature selection and logistic regression model based on clinical features + radiomics features had the best performance (AUC: 0.87). The best model predicted an AUC of 0.85 (95%CI, 0.75-0.94) on the internal test set and 0.81 (95%CI, 0.64-0.99) and 0.83 (95%CI, 0.68-0.97) on the two external test sets, respectively. Twenty-two radiomics features were selected by lasso regression. The second-order feature gray level non-uniformity normalized was the most important radiomics feature. Age is the feature with the greatest contribution to prediction. The combination of clinical features and radiomics features using logistic regression models can improve the outcome prediction of patients with sICH 90 days after surgery.

摘要

本研究旨在探讨基于影像组学特征和临床特征的机器学习(ML)模型在预测自发性幕上脑出血(sICH)术后90天预后的价值。共有348例sICH患者在三个医疗中心接受了开颅血肿清除术。从基线CT上的sICH病灶中提取了108个影像组学特征。使用12种特征选择算法对影像组学特征进行筛选。临床特征包括年龄、性别、入院时格拉斯哥昏迷量表(GCS)、脑室内出血(IVH)、中线移位(MLS)和深部脑出血。分别基于临床特征以及临床特征+影像组学特征构建了9个ML模型。对特征选择和ML模型的不同组合进行网格搜索以进行参数调整。计算平均受试者工作特征(ROC)曲线下面积(AUC),并选择AUC最大的模型。然后使用多中心数据对其进行测试。基于临床特征+影像组学特征的套索回归特征选择和逻辑回归模型的组合表现最佳(AUC:0.87)。最佳模型在内部测试集上预测的AUC为0.85(95%CI,0.75 - 0.94),在两个外部测试集上分别为0.81(95%CI,0.64 - 0.99)和0.83(95%CI,0.68 - 0.97)。通过套索回归选择了22个影像组学特征。二阶特征灰度非均匀性归一化是最重要的影像组学特征。年龄是对预测贡献最大的特征。使用逻辑回归模型将临床特征和影像组学特征相结合可以改善sICH患者术后90天的预后预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df3c/9961203/cfbe9e05f840/jcm-12-01580-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验