Suppr超能文献

急性前循环非腔隙性梗死缺血区域的影像组学结果预测比较

Outcome prediction comparison of ischaemic areas' radiomics in acute anterior circulation non-lacunar infarction.

作者信息

Zhou Xiang, Meng Jinxi, Zhang Kangwei, Zheng Hui, Xi Qian, Peng Yifeng, Xu Xiaowen, Gu Jianjun, Xia Qing, Wei Lai, Wang Peijun

机构信息

Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.

Department of Radiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.

出版信息

Brain Commun. 2024 Nov 15;6(6):fcae393. doi: 10.1093/braincomms/fcae393. eCollection 2024.

Abstract

The outcome prediction of acute anterior circulation non-lacunar infarction (AACNLI) is important for the precise clinical treatment of this disease. However, the accuracy of prognosis prediction is still limited. This study aims to develop and compare machine learning models based on MRI radiomics of multiple ischaemic-related areas for prognostic prediction in AACNLI. This retrospective multicentre study consecutively included 372 AACNLI patients receiving MRI examinations and conventional therapy between October 2020 and February 2023. These were grouped into training set, internal test set and external test set. MRI radiomics features were extracted from the mask diffusion-weighted imaging, mask apparent diffusion coefficient (ADC) and mask ADC620 by AACNLI segmentations. Grid search parameter tuning was performed on 12 feature selection and 9 machine learning algorithms, and algorithm combinations with the smallest rank-sum of area under the curve (AUC) was selected for model construction. The performances of all models were evaluated in the internal and external test sets. The AUC of radiomics model was larger than that of non-radiomics model with the same machine learning algorithm in the three mask types. The radiomics model using least absolute shrinkage and selection operator-random forest algorithm combination gained the smallest AUC rank-sum among all the algorithm combinations. The AUC of the model with ADC620 was 0.98 in the internal test set and 0.91 in the external test set, and the weighted average AUC in the three sets was 0.96, the largest among three mask types. The Shapley additive explanations values of the maximum of National Institute of Health Stroke Scale score within 7 days from onset (7-d NIHSS), stroke-associated pneumonia and admission Glasgow coma scale score ranked top three among the features in AACNLI outcome prediction. In conclusion, the random forest model with mask ADC620 can accurately predict the AACNLI outcome and reveal the risk factors leading to the poor prognosis.

摘要

急性前循环非腔隙性梗死(AACNLI)的预后预测对于该疾病的精准临床治疗至关重要。然而,预后预测的准确性仍较为有限。本研究旨在开发并比较基于多个缺血相关区域MRI影像组学的机器学习模型,用于AACNLI的预后预测。这项回顾性多中心研究连续纳入了2020年10月至2023年2月期间接受MRI检查和常规治疗的372例AACNLI患者。这些患者被分为训练集、内部测试集和外部测试集。通过AACNLI分割从掩码扩散加权成像、掩码表观扩散系数(ADC)和掩码ADC620中提取MRI影像组学特征。对12种特征选择方法和9种机器学习算法进行网格搜索参数调整,并选择曲线下面积(AUC)秩和最小的算法组合进行模型构建。在内部和外部测试集中评估所有模型的性能。在三种掩码类型中,相同机器学习算法下,影像组学模型的AUC大于非影像组学模型。在所有算法组合中,使用最小绝对收缩和选择算子-随机森林算法组合的影像组学模型获得的AUC秩和最小。在内部测试集中,使用ADC620的模型AUC为0.98,在外部测试集中为0.91,三组的加权平均AUC为0.96,是三种掩码类型中最大的。发病后7天内美国国立卫生研究院卒中量表评分(7-d NIHSS)最大值、卒中相关性肺炎和入院时格拉斯哥昏迷量表评分的Shapley值在AACNLI预后预测特征中排名前三。总之,使用掩码ADC620的随机森林模型能够准确预测AACNLI的预后,并揭示导致预后不良的危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad5b/11580218/327379df012f/fcae393_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验