Biswas Abhishek, Kurtulan Dzhem, Ngeru Timothy, Azócar Guzmán Abril, Hanke Stefanie, Hartmaier Alexander
Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätstraße 150, 44801 Bochum, Germany.
Chair of Materials Science and Engineering, Universität Duisburg-Essen, 47057 Duisburg, Germany.
Materials (Basel). 2023 Feb 6;16(4):1367. doi: 10.3390/ma16041367.
Low-nickel austenitic steel is subjected to high-pressure torsion fatigue (HPTF) loading, where a constant axial compression is overlaid with a cyclic torsion. The focus of this work lies on investigating whether isotropic J2 plasticity or crystal plasticity can describe the mechanical behavior during HPTF loading, particularly focusing on the axial creep deformation seen in the experiment. The results indicate that a J2 plasticity model with an associated flow rule fails to describe the axial creep behavior. In contrast, a micromechanical model based on an empirical crystal plasticity law with kinematic hardening described by the Ohno-Wang rule can match the HPTF experiments quite accurately. Hence, our results confirm the versatility of crystal plasticity in combination with microstructural models to describe the mechanical behavior of materials under reversing multiaxial loading situations.
低镍奥氏体钢承受高压扭转疲劳(HPTF)载荷,其中恒定轴向压缩与循环扭转叠加。这项工作的重点在于研究各向同性J2塑性或晶体塑性是否能够描述HPTF加载过程中的力学行为,尤其关注实验中观察到的轴向蠕变变形。结果表明,具有相关流动法则的J2塑性模型无法描述轴向蠕变行为。相比之下,基于经验晶体塑性定律并采用Ohno-Wang规则描述运动硬化的微观力学模型能够相当准确地匹配HPTF实验。因此,我们的结果证实了晶体塑性与微观结构模型相结合在描述材料在反向多轴加载情况下力学行为方面的通用性。