Kim Andrew, Dash Jatis Kumar, Patel Rajkumar
Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY 10003, USA.
Department of Physics, SRM University-AP, Amaravati 522502, India.
Membranes (Basel). 2023 Feb 2;13(2):183. doi: 10.3390/membranes13020183.
Lithium-Sulfur batteries (LSBs) are one of the most promising next-generation batteries to replace Li-ion batteries that power everything from small portable devices to large electric vehicles. LSBs boast a nearly five times higher theoretical capacity than Li-ion batteries due to sulfur's high theoretical capacity, and LSBs use abundant sulfur instead of rare metals as their cathodes. In order to make LSBs commercially viable, an LSB's separator must permit fast Li-ion diffusion while suppressing the migration of soluble lithium polysulfides (LiPSs). Polyolefin separators (commonly used in Li-ion batteries) fail to block LiPSs, have low thermal stability, poor mechanical strength, and weak electrolyte affinity. Novel nanofiber (NF) separators address the aforementioned shortcomings of polyolefin separators with intrinsically superior properties. Moreover, NF separators can easily be produced in large volumes, fine-tuned via facile electrospinning techniques, and modified with various additives. This review discusses the design principles and performance of LSBs with exemplary NF separators. The benefits of using various polymers and the effects of different polymer modifications are analyzed. We also discuss the conversion of polymer NFs into carbon NFs (CNFs) and their effects on rate capability and thermal stability. Finally, common and promising modifiers for NF separators, including carbon, metal oxide, and metal-organic framework (MOF), are examined. We highlight the underlying properties of the composite NF separators that enhance the capacity, cyclability, and resilience of LSBs.
锂硫电池(LSB)是最有前景的下一代电池之一,有望取代为从小型便携式设备到大型电动汽车等所有设备供电的锂离子电池。由于硫的理论容量高,锂硫电池的理论容量几乎是锂离子电池的五倍,并且锂硫电池使用丰富的硫而不是稀有金属作为其阴极。为了使锂硫电池具有商业可行性,锂硫电池的隔膜必须允许锂离子快速扩散,同时抑制可溶性多硫化锂(LiPS)的迁移。聚烯烃隔膜(常用于锂离子电池)无法阻挡多硫化锂,热稳定性低,机械强度差,电解质亲和力弱。新型纳米纤维(NF)隔膜以其固有的优异性能解决了聚烯烃隔膜的上述缺点。此外,纳米纤维隔膜可以很容易地大量生产,通过简便的静电纺丝技术进行微调,并使用各种添加剂进行改性。本文综述了具有示例性纳米纤维隔膜的锂硫电池的设计原理和性能。分析了使用各种聚合物的益处以及不同聚合物改性的效果。我们还讨论了聚合物纳米纤维向碳纳米纤维(CNF)的转化及其对倍率性能和热稳定性的影响。最后,研究了纳米纤维隔膜常见且有前景的改性剂,包括碳、金属氧化物和金属有机框架(MOF)。我们强调了复合纳米纤维隔膜的潜在特性,这些特性增强了锂硫电池的容量、循环稳定性和恢复能力。