Geiß Manuela, Wagner Raphael, Baresch Martin, Steiner Josef, Zwick Michael
Software Competence Center Hagenberg GmbH, Softwarepark 32a, 4232 Hagenberg, Austria.
KEBA Group AG, Reindlstraße 51, 4040 Linz, Austria.
Micromachines (Basel). 2023 Feb 13;14(2):442. doi: 10.3390/mi14020442.
In the past few years, object detection has attracted a lot of attention in the context of human-robot collaboration and Industry 5.0 due to enormous quality improvements in deep learning technologies. In many applications, object detection models have to be able to quickly adapt to a changing environment, i.e., to learn new objects. A crucial but challenging prerequisite for this is the automatic generation of new training data which currently still limits the broad application of object detection methods in industrial manufacturing. In this work, we discuss how to adapt state-of-the-art object detection methods for the task of automatic bounding box annotation in a use case where the background is homogeneous and the object's label is provided by a human. We compare an adapted version of Faster R-CNN and the Scaled-YOLOv4-p5 architecture and show that both can be trained to distinguish unknown objects from a complex but homogeneous background using only a small amount of training data. In contrast to most other state-of-the-art methods for bounding box labeling, our proposed method neither requires human verification, a predefined set of classes, nor a very large manually annotated dataset. Our method outperforms the state-of-the-art, transformer-based object discovery method on our simple fruits dataset by large margins.
在过去几年中,由于深度学习技术在质量上有了巨大提升,目标检测在人机协作和工业5.0的背景下受到了广泛关注。在许多应用中,目标检测模型必须能够快速适应不断变化的环境,即学习新的目标。实现这一点的一个关键但具有挑战性的前提条件是自动生成新的训练数据,而这目前仍然限制了目标检测方法在工业制造中的广泛应用。在这项工作中,我们讨论了在背景均匀且目标标签由人工提供的用例中,如何使最先进的目标检测方法适应自动边界框标注任务。我们比较了Faster R-CNN的改进版本和Scaled-YOLOv4-p5架构,结果表明,仅使用少量训练数据,两者都可以被训练以从复杂但均匀的背景中区分出未知目标。与大多数其他用于边界框标注的最先进方法不同,我们提出的方法既不需要人工验证,也不需要预定义的类别集,也不需要非常大的人工标注数据集。在我们简单的水果数据集上,我们的方法大幅优于基于变压器的最先进目标发现方法。