School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Small. 2023 May;19(21):e2206426. doi: 10.1002/smll.202206426. Epub 2023 Feb 25.
Nanomedicines confront various complicated physiological barriers limiting the accumulation and deep penetration in the tumor microenvironment, which seriously restricts the efficacy of antitumor therapy. Self-propelled nanocarriers assembled with kinetic engines can translate external energy into orientated motion for tumor penetration. However, achieving a stable ultrafast permeability at the tumor site remains challenging. Here, sub-200 nm photoactivated completely organic nanorockets (NRs), with asymmetric geometry conveniently assembled from photothermal semiconducting polymer payload and thermo-driven macromolecular propulsion through a straightforward nanoprecipitation process, are presented. The artificial NRs can be remotely manipulated by 808 nm near-infrared light to trigger the photothermal conversion and Curtius rearrangement reaction within the particles for robustly pushing nitrogen out into the solution. Such a two-stage light-to-heat-to-chemical energy transition effectively powers the NRs for an ultrafast (≈300 µm s ) and chemical medium-independent self-propulsion in the liquid media. That endows the NRs with high permeability against physiological barriers in the tumor microenvironment to directionally deliver therapeutic agents to target lesions for elevating tumor accumulation, deep penetration, and cellular uptake, resulting in a significant enhancement of antitumor efficacy. This work will inspire the design of advanced kinetic systems for powering intelligent nanomachines in biomedical applications.
纳米医学面临各种复杂的生理障碍,限制了其在肿瘤微环境中的积累和深层渗透,严重限制了抗肿瘤治疗的效果。由动力引擎组装而成的自推进纳米载体可以将外部能量转化为定向运动,以穿透肿瘤。然而,实现在肿瘤部位的稳定超快速渗透仍然具有挑战性。在这里,展示了亚 200nm 的光激活全有机纳米火箭(NRs),其具有不对称的几何形状,可通过简单的纳米沉淀过程,从光热半导体聚合物有效负载和热驱动的大分子推进剂方便地组装而成。人工 NRs 可以通过 808nm 的近红外光远程操纵,以触发颗粒内的光热转换和库尔提乌斯重排反应,从而将氮气强烈地推入溶液中。这种两阶段的光-热-化学能量转换有效地为 NRs 提供动力,使其在液体介质中能够实现超快(≈300μm s)和化学介质独立的自推进。这使 NRs 具有高渗透性,可克服肿瘤微环境中的生理障碍,将治疗剂定向递送到靶病变部位,以提高肿瘤积累、深层渗透和细胞摄取,从而显著提高抗肿瘤疗效。这项工作将启发用于生物医学应用的智能纳米机器的先进动力系统的设计。