KAIST, School of Electrical Engineering, Daejeon, 34141, South Korea.
Department of Applied Statistics, Yonsei University, Seoul, 03722, South Korea.
Sci Rep. 2023 Feb 25;13(1):3288. doi: 10.1038/s41598-023-29495-y.
A kernel-based quantum classifier is the most practical and influential quantum machine learning technique for the hyper-linear classification of complex data. We propose a Variational Quantum Approximate Support Vector Machine (VQASVM) algorithm that demonstrates empirical sub-quadratic run-time complexity with quantum operations feasible even in NISQ computers. We experimented our algorithm with toy example dataset on cloud-based NISQ machines as a proof of concept. We also numerically investigated its performance on the standard Iris flower and MNIST datasets to confirm the practicality and scalability.
基于核的量子分类器是最实用和最有影响力的量子机器学习技术,可用于对复杂数据进行超线性分类。我们提出了一种变分量子近似支持向量机(VQASVM)算法,该算法展示了经验次二次运行时间复杂度,即使在 NISQ 计算机上也可行量子操作。我们在基于云的 NISQ 机器上的玩具示例数据集上进行了实验,以验证概念。我们还在标准鸢尾花和 MNIST 数据集上对其性能进行了数值研究,以确认其实用性和可扩展性。