Suppr超能文献

基于多组学融合特征空间的 MGMT 启动子甲基化状态放射基因组分类,通过 mpMRI 扫描实现最小侵入性诊断。

Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans.

机构信息

Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.

Department of Computer Science and IT, Neelum Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.

出版信息

Sci Rep. 2023 Feb 25;13(1):3291. doi: 10.1038/s41598-023-30309-4.

Abstract

Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.

摘要

准确的脑肿瘤放射基因组分类对于提高胶质母细胞瘤患者的诊断、预后和治疗计划的标准非常重要。在这项研究中,我们提出了一种新的两阶段 O6-甲基鸟嘌呤-DNA 甲基转移酶启动子甲基化预测(MGMT-PMP)系统,该系统提取与放射组学特征融合的潜在特征,预测胶质母细胞瘤的遗传亚型。我们提出了一种新的微调深度学习架构,即深度学习放射组学特征提取(DLRFE)模块,用于提取潜在特征,通过放射组学特征(GLCM、HOG 和 LBP)融合定量知识与肿瘤结构的空间分布和大小。初学者拒绝算法的应用已被发现可以有效地选择和隔离原始数据集中的负训练实例。然后,将融合的特征向量通过 k-NN 和 SVM 分类器进行训练和测试。2021 年 RSNA 脑肿瘤挑战赛数据集(BraTS-2021)由四个结构磁共振成像组成,分别是液体衰减反转恢复、T1 加权、T1 加权对比增强和 T2 加权。我们首次在已发表的形式中评估了分类性能,以准确性、F 分数和马修斯相关系数等指标进行评估。Jackknife 十折交叉验证用于训练和测试 BraTS-2021 数据集验证。对于检测患有胶质母细胞瘤的患者的 MGMT 甲基化状态,最高的分类性能分别为(96.84±0.09)%、(96.08±0.10)%和(97.44±0.14)%,分别为准确性、敏感性和特异性。放射基因组学特征的深度学习特征提取,融合成像表型和分子结构,使用拒绝算法已被发现具有出色的能力,能够检测胶质母细胞瘤患者的 MGMT 甲基化状态。该方法将基因组变异与放射组学特征相关联,在两个研究领域之间架起桥梁,这可能对临床治疗计划有帮助,从而改善治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c9/9968340/88b667d063fa/41598_2023_30309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验