Chinichian Narges, Kruschwitz Johann D, Reinhardt Pablo, Palm Maximilian, Wellan Sarah A, Erk Susanne, Heinz Andreas, Walter Henrik, Veer Ilya M
Institute for Theoretical Physics, Technical University of Berlin, Berlin, Germany.
Department of Psychiatry and Psychotherapy, Charité Campus Mitte (CCM), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Front Neurosci. 2023 Feb 9;17:1025428. doi: 10.3389/fnins.2023.1025428. eCollection 2023.
Dynamic interactions between brain regions, either during rest or performance of cognitive tasks, have been studied extensively using a wide variance of methods. Although some of these methods allow elegant mathematical interpretations of the data, they can easily become computationally expensive or difficult to interpret and compare between subjects or groups. Here, we propose an intuitive and computationally efficient method to measure dynamic reconfiguration of brain regions, also termed flexibility. Our flexibility measure is defined in relation to an a-priori set of biologically plausible brain modules (or networks) and does not rely on a stochastic data-driven module estimation, which, in turn, minimizes computational burden. The change of affiliation of brain regions over time with respect to these a-priori template modules is used as an indicator of brain network flexibility. We demonstrate that our proposed method yields highly similar patterns of whole-brain network reconfiguration (i.e., flexibility) during a working memory task as compared to a previous study that uses a data-driven, but computationally more expensive method. This result illustrates that the use of a fixed modular framework allows for valid, yet more efficient estimation of whole-brain flexibility, while the method additionally supports more fine-grained (e.g. node and group of nodes scale) flexibility analyses restricted to biologically plausible brain networks.
无论是在休息状态还是执行认知任务期间,大脑区域之间的动态相互作用都已通过多种方法进行了广泛研究。尽管其中一些方法能够对数据进行精妙的数学解释,但它们很容易变得计算成本高昂,或者难以在个体或群体之间进行解释和比较。在此,我们提出一种直观且计算高效的方法来测量大脑区域的动态重构,也称为灵活性。我们的灵活性度量是相对于一组先验的具有生物学合理性的大脑模块(或网络)来定义的,并且不依赖于随机的数据驱动模块估计,这反过来又将计算负担降至最低。大脑区域相对于这些先验模板模块随时间的归属变化被用作大脑网络灵活性的指标。我们证明,与之前一项使用数据驱动但计算成本更高的方法的研究相比,我们提出的方法在工作记忆任务期间产生的全脑网络重构(即灵活性)模式高度相似。这一结果表明,使用固定的模块化框架能够对全脑灵活性进行有效但更高效的估计,同时该方法还支持在限于具有生物学合理性的大脑网络内进行更细粒度(例如节点和节点组尺度)的灵活性分析。