Suppr超能文献

一种用于计算动态网络重构和节点灵活性的快速直观方法。

A fast and intuitive method for calculating dynamic network reconfiguration and node flexibility.

作者信息

Chinichian Narges, Kruschwitz Johann D, Reinhardt Pablo, Palm Maximilian, Wellan Sarah A, Erk Susanne, Heinz Andreas, Walter Henrik, Veer Ilya M

机构信息

Institute for Theoretical Physics, Technical University of Berlin, Berlin, Germany.

Department of Psychiatry and Psychotherapy, Charité Campus Mitte (CCM), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Front Neurosci. 2023 Feb 9;17:1025428. doi: 10.3389/fnins.2023.1025428. eCollection 2023.

Abstract

Dynamic interactions between brain regions, either during rest or performance of cognitive tasks, have been studied extensively using a wide variance of methods. Although some of these methods allow elegant mathematical interpretations of the data, they can easily become computationally expensive or difficult to interpret and compare between subjects or groups. Here, we propose an intuitive and computationally efficient method to measure dynamic reconfiguration of brain regions, also termed flexibility. Our flexibility measure is defined in relation to an a-priori set of biologically plausible brain modules (or networks) and does not rely on a stochastic data-driven module estimation, which, in turn, minimizes computational burden. The change of affiliation of brain regions over time with respect to these a-priori template modules is used as an indicator of brain network flexibility. We demonstrate that our proposed method yields highly similar patterns of whole-brain network reconfiguration (i.e., flexibility) during a working memory task as compared to a previous study that uses a data-driven, but computationally more expensive method. This result illustrates that the use of a fixed modular framework allows for valid, yet more efficient estimation of whole-brain flexibility, while the method additionally supports more fine-grained (e.g. node and group of nodes scale) flexibility analyses restricted to biologically plausible brain networks.

摘要

无论是在休息状态还是执行认知任务期间,大脑区域之间的动态相互作用都已通过多种方法进行了广泛研究。尽管其中一些方法能够对数据进行精妙的数学解释,但它们很容易变得计算成本高昂,或者难以在个体或群体之间进行解释和比较。在此,我们提出一种直观且计算高效的方法来测量大脑区域的动态重构,也称为灵活性。我们的灵活性度量是相对于一组先验的具有生物学合理性的大脑模块(或网络)来定义的,并且不依赖于随机的数据驱动模块估计,这反过来又将计算负担降至最低。大脑区域相对于这些先验模板模块随时间的归属变化被用作大脑网络灵活性的指标。我们证明,与之前一项使用数据驱动但计算成本更高的方法的研究相比,我们提出的方法在工作记忆任务期间产生的全脑网络重构(即灵活性)模式高度相似。这一结果表明,使用固定的模块化框架能够对全脑灵活性进行有效但更高效的估计,同时该方法还支持在限于具有生物学合理性的大脑网络内进行更细粒度(例如节点和节点组尺度)的灵活性分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f34/9949291/8ee7b83cd371/fnins-17-1025428-g0001.jpg

相似文献

1
A fast and intuitive method for calculating dynamic network reconfiguration and node flexibility.
Front Neurosci. 2023 Feb 9;17:1025428. doi: 10.3389/fnins.2023.1025428. eCollection 2023.
2
Persistency and flexibility of complex brain networks underlie dual-task interference.
Hum Brain Mapp. 2015 Sep;36(9):3542-62. doi: 10.1002/hbm.22861. Epub 2015 Jun 12.
3
Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
J Neurosci. 2017 Aug 30;37(35):8399-8411. doi: 10.1523/JNEUROSCI.0485-17.2017. Epub 2017 Jul 31.
4
Dynamic reconfiguration of frontal brain networks during executive cognition in humans.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11678-83. doi: 10.1073/pnas.1422487112. Epub 2015 Aug 31.
5
Detection of functional brain network reconfiguration during task-driven cognitive states.
Neuroimage. 2016 Nov 15;142:198-210. doi: 10.1016/j.neuroimage.2016.05.078. Epub 2016 May 31.
6
The role of neural flexibility in cognitive aging.
Neuroimage. 2022 Feb 15;247:118784. doi: 10.1016/j.neuroimage.2021.118784. Epub 2021 Dec 11.
7
Modeling brain network flexibility in networks of coupled oscillators: a feasibility study.
Sci Rep. 2024 Mar 8;14(1):5713. doi: 10.1038/s41598-024-55753-8.
8
Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12568-12573. doi: 10.1073/pnas.1608819113. Epub 2016 Oct 17.
10
Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.
J Neurosci. 2016 Sep 28;36(39):10060-74. doi: 10.1523/JNEUROSCI.1476-16.2016.

引用本文的文献

1
Mindfulness Meditation and Network Neuroscience: Review, Synthesis, and Future Directions.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025 Apr;10(4):350-358. doi: 10.1016/j.bpsc.2024.11.005. Epub 2024 Nov 17.
2
Unveiling the neuroplastic capacity of the bilingual brain: insights from healthy and pathological individuals.
Brain Struct Funct. 2024 Dec;229(9):2187-2205. doi: 10.1007/s00429-024-02846-9. Epub 2024 Sep 18.
3
Global motion filtered nonlinear mutual information analysis: Enhancing dynamic portfolio strategies.
PLoS One. 2024 Jul 11;19(7):e0303707. doi: 10.1371/journal.pone.0303707. eCollection 2024.
4
Modeling brain network flexibility in networks of coupled oscillators: a feasibility study.
Sci Rep. 2024 Mar 8;14(1):5713. doi: 10.1038/s41598-024-55753-8.

本文引用的文献

1
Dynamic reconfiguration of functional brain networks during working memory training.
Nat Commun. 2020 May 15;11(1):2435. doi: 10.1038/s41467-020-15631-z.
2
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
4
Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review.
Front Neurosci. 2019 Jun 6;13:585. doi: 10.3389/fnins.2019.00585. eCollection 2019.
5
Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world.
Netw Neurosci. 2018 Oct 1;3(1):1-26. doi: 10.1162/netn_a_00054. eCollection 2019.
6
Atypical Flexibility in Dynamic Functional Connectivity Quantifies the Severity in Autism Spectrum Disorder.
Front Hum Neurosci. 2019 Feb 1;13:6. doi: 10.3389/fnhum.2019.00006. eCollection 2019.
7
Brain Modularity Mediates the Relation between Task Complexity and Performance.
J Cogn Neurosci. 2017 Sep;29(9):1532-1546. doi: 10.1162/jocn_a_01142. Epub 2017 May 4.
8
Multi-scale brain networks.
Neuroimage. 2017 Oct 15;160:73-83. doi: 10.1016/j.neuroimage.2016.11.006. Epub 2016 Nov 11.
9
The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.
Cereb Cortex. 2016 Aug;26(8):3508-26. doi: 10.1093/cercor/bhw157. Epub 2016 May 26.
10
Modular Brain Networks.
Annu Rev Psychol. 2016;67:613-40. doi: 10.1146/annurev-psych-122414-033634. Epub 2015 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验