Suppr超能文献

通过分子生物学工具的田间规模应用提高生物修复效果。

Increasing bioremediation effectiveness through field-scale application of molecular biological tools.

作者信息

Madison Andrew S, Sorsby Skyler J, Wang Yingnan, Key Trent A

机构信息

Golder Associates USA Inc., (Currently WSP USA Inc.), Marlton, NJ, United States.

Imperial Oil Limited, Calgary, AB, Canada.

出版信息

Front Microbiol. 2023 Feb 10;13:1005871. doi: 10.3389/fmicb.2022.1005871. eCollection 2022.

Abstract

Leveraging the capabilities of microorganisms to reduce (degrade or transform) concentrations of pollutants in soil and groundwater can be a cost-effective, natural remedial approach to manage contaminated sites. Traditional design and implementation of bioremediation strategies consist of lab-scale biodegradation studies or collection of field-scale geochemical data to infer associated biological processes. While both lab-scale biodegradation studies and field-scale geochemical data are useful for remedial decision-making, additional insights can be gained through the application of Molecular Biological Tools (MBTs) to directly measure contaminant-degrading microorganisms and associated bioremediation processes. Field-scale application of a standardized framework pairing MBTs with traditional contaminant and geochemical analyses was successfully performed at two contaminated sites. At a site with trichloroethene (TCE) impacted groundwater, framework application informed design of an enhanced bioremediation approach. Baseline abundances of 16S rRNA genes for a genus of obligate organohalide-respiring bacteria (i.e., ) were measured at low abundances (10-10 cells/mL) within the TCE source and plume areas. In combination with geochemical analyses, these data suggested that intrinsic biodegradation (i.e., reductive dechlorination) may be occurring, but activities were limited by electron donor availability. The framework was utilized to support development of a full-scale enhanced bioremediation design (i.e., electron donor addition) and to monitor remedial performance. Additionally, the framework was applied at a second site with residual petroleum hydrocarbon (PHC) impacted soils and groundwater. MBTs, specifically qPCR and 16S gene amplicon rRNA sequencing, were used to characterize intrinsic bioremediation mechanisms. Functional genes associated with anaerobic biodegradation of diesel components (e.g., naphthyl-2-methyl-succinate synthase, naphthalene carboxylase, alkylsuccinate synthase, and benzoyl coenzyme A reductase) were measured to be 2-3 orders of magnitude greater than unimpacted, background samples. Intrinsic bioremediation mechanisms were determined to be sufficient to achieve groundwater remediation objectives. Nonetheless, the framework was further utilized to assess that an enhanced bioremediation could be a successful remedial alternative or complement to source area treatment. While bioremediation of chlorinated solvents, PHCs, and other contaminants has been demonstrated to successfully reduce environmental risk and reach site goals, the application of field-scale MBT data in combination with contaminant and geochemical data analyses to design, implement, and monitor a site-specific bioremediation approach can result in more consistent remedy effectiveness.

摘要

利用微生物的能力来降低(降解或转化)土壤和地下水中污染物的浓度,可能是一种经济高效的自然修复方法,用于管理受污染场地。生物修复策略的传统设计与实施包括实验室规模的生物降解研究或收集现场规模的地球化学数据,以推断相关的生物过程。虽然实验室规模的生物降解研究和现场规模的地球化学数据都对修复决策有用,但通过应用分子生物学工具(MBTs)直接测量降解污染物的微生物及相关生物修复过程,可以获得更多见解。在两个受污染场地成功进行了将MBTs与传统污染物和地球化学分析相结合的标准化框架的现场规模应用。在一个三氯乙烯(TCE)污染地下水的场地,框架应用为强化生物修复方法的设计提供了依据。在TCE源区和羽流区内,专性有机卤呼吸细菌属的16S rRNA基因的基线丰度测量值较低(10-10 细胞/mL)。结合地球化学分析,这些数据表明可能正在发生自然生物降解(即还原脱氯),但活性受到电子供体可用性的限制。该框架被用于支持全面强化生物修复设计(即添加电子供体)并监测修复性能。此外,该框架还应用于第二个残留石油烃(PHC)污染土壤和地下水的场地。MBTs,特别是定量聚合酶链反应(qPCR)和16S基因扩增子rRNA测序,被用于表征自然生物修复机制。与柴油成分厌氧生物降解相关的功能基因(如萘基-2-甲基琥珀酸合酶、萘羧化酶、烷基琥珀酸合酶和苯甲酰辅酶A还原酶)的测量值比未受影响的背景样品高2-3个数量级。确定自然生物修复机制足以实现地下水修复目标。尽管如此,该框架还被进一步用于评估强化生物修复可能是源区处理的一种成功的修复替代方案或补充。虽然已证明对氯化溶剂、PHCs和其他污染物的生物修复能够成功降低环境风险并达到场地目标,但将现场规模的MBT数据与污染物和地球化学数据分析相结合,用于设计、实施和监测特定场地的生物修复方法,可以使修复效果更加一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc14/9950576/aa5bfeff0546/fmicb-13-1005871-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验