Qiu Minghao, Zigler Corwin, Selin Noelle E
Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Department of Statistics and Data Science, University of Texas at Austin, Texas, USA.
Atmos Chem Phys. 2022;22(16):10551-10566. doi: 10.5194/acp-22-10551-2022. Epub 2022 Aug 19.
Evaluating the influence of anthropogenic-emission changes on air quality requires accounting for the influence of meteorological variability. Statistical methods such as multiple linear regression (MLR) models with basic meteorological variables are often used to remove meteorological variability and estimate trends in measured pollutant concentrations attributable to emission changes. However, the ability of these widely used statistical approaches to correct for meteorological variability remains unknown, limiting their usefulness in the real-world policy evaluations. Here, we quantify the performance of MLR and other quantitative methods using simulations from a chemical transport model, GEOS-Chem, as a synthetic dataset. Focusing on the impacts of anthropogenic-emission changes in the US (2011 to 2017) and China (2013 to 2017) on PM and O, we show that widely used regression methods do not perform well in correcting for meteorological variability and identifying long-term trends in ambient pollution related to changes in emissions. The estimation errors, characterized as the differences between meteorology-corrected trends and emission-driven trends under constant meteorology scenarios, can be reduced by 30%-42% using a random forest model that incorporates both local- and regional-scale meteorological features. We further design a correction method based on GEOS-Chem simulations with constant-emission input and quantify the degree to which anthropogenic emissions and meteorological influences are inseparable, due to their process-based interactions. We conclude by providing recommendations for evaluating the impacts of anthropogenic-emission changes on air quality using statistical approaches.
评估人为排放变化对空气质量的影响需要考虑气象变率的影响。诸如包含基本气象变量的多元线性回归(MLR)模型等统计方法,常被用于消除气象变率,并估算因排放变化导致的实测污染物浓度趋势。然而,这些广泛使用的统计方法校正气象变率的能力仍不明确,这限制了它们在实际政策评估中的效用。在此,我们使用化学传输模型GEOS-Chem的模拟结果作为综合数据集,来量化MLR和其他定量方法的性能。聚焦于美国(2011年至2017年)和中国(2013年至2017年)人为排放变化对细颗粒物(PM)和臭氧(O₃)的影响,我们发现广泛使用的回归方法在校正气象变率以及识别与排放变化相关的环境污染长期趋势方面表现不佳。通过使用纳入了本地和区域尺度气象特征的随机森林模型,以气象校正趋势与恒定气象情景下排放驱动趋势之间的差异为特征的估算误差可降低30%-42%。我们进一步基于恒定排放输入的GEOS-Chem模拟设计了一种校正方法,并量化了由于基于过程的相互作用,人为排放和气象影响不可分割的程度。我们通过提供使用统计方法评估人为排放变化对空气质量影响的建议来得出结论。