Kawano Ayako, Kelp Makoto, Qiu Minghao, Singh Kirat, Chaturvedi Eeshan, Dahiya Sunil, Azevedo Inés, Burke Marshall
Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA, USA.
Department of Earth System Science, Stanford University, Stanford, CA, USA.
Sci Adv. 2025 Jan 24;11(4):eadq1071. doi: 10.1126/sciadv.adq1071.
Poor ambient air quality poses a substantial global health threat. However, accurate measurement remains challenging, particularly in countries such as India where ground monitors are scarce despite high expected exposure and health burdens. This lack of precise measurements impedes understanding of changes in pollution exposure over time and across populations. Here, we develop open-source daily fine particulate matter (PM) datasets at a 10-kilometer resolution for India from 2005 to 2023 using a two-stage machine learning model validated on held-out monitor data. Analyzing long-term air quality trends, we find that PM concentrations increased across most of the country until around 2016 and then declined partly due to favorable meteorology in southern India. Recent reductions in PM were substantially larger in wealthier areas, highlighting the urgency of air quality control policies addressing all socioeconomic communities. To advance equitable air quality monitoring, we propose additional monitor locations in India and examine the adaptability of our method to other countries with scarce monitoring data.
恶劣的环境空气质量对全球健康构成了重大威胁。然而,精确测量仍然具有挑战性,尤其是在印度等国家,尽管预计暴露水平和健康负担很高,但地面监测站却很稀少。缺乏精确测量阻碍了我们对不同时间和不同人群中污染暴露变化的理解。在此,我们使用在保留监测数据上验证的两阶段机器学习模型,开发了2005年至2023年印度10公里分辨率的开源每日细颗粒物(PM)数据集。通过分析长期空气质量趋势,我们发现,该国大部分地区的PM浓度在2016年左右之前一直在上升,之后部分由于印度南部有利的气象条件而下降。最近,较富裕地区的PM降幅更大,凸显了针对所有社会经济群体的空气质量控制政策的紧迫性。为了推进公平的空气质量监测,我们提议在印度增加监测站位置,并研究我们的方法对其他监测数据稀缺国家的适用性。