Suppr超能文献

新冠疫情第一波期间中国地级市卫生健康委员会在地方政府社交媒体上的对话式沟通:证据

Dialogic communication on local government social media during the first wave of COVID-19: Evidence from the health commissions of prefecture-level cities in China.

作者信息

Chen Qiang, Zhang Yangyi, Liu Huan, Zhang Wei, Evans Richard

机构信息

School of Journalism and New Media, Xi'an Jiaotong University, Xi'an, China.

School of Medicine and Health Management, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Comput Human Behav. 2023 Jun;143:107715. doi: 10.1016/j.chb.2023.107715. Epub 2023 Feb 17.

Abstract

Although some scholars have explored the level and determinants of Dialogic Communication on Government Social Media (DCGSM), none have conducted their studies in the context of public crisis. The current study contributes to the understanding on DCGSM by 16,822 posts crawled from the official Sina Weibo accounts of 104 Chinese health commissions in prefecture-level cities during the first wave of the COVID-19 pandemic. Results show that Chinese local government agencies have great variations in their DCGSM during the pandemic and the overall performance is poor. Furthermore, Chinese local governments prefer to conserve visitors and generate return visits, rather than dialogic loops development and the usefulness of information enhancement. The findings suggest that both public pressure and peer pressure contribute to the DCGSM of Chinese local governments during the public health crisis. In addition, the effect of public pressure is stronger than that of the peer pressure, indicating that local government agencies have experienced more demand-pull DCGSM.

摘要

尽管一些学者探讨了政府社交媒体上的对话式沟通(DCGSM)水平及其决定因素,但尚无研究在公共危机背景下进行。本研究通过在新冠疫情第一波期间从104个中国地级市卫生健康委员会的官方新浪微博账号抓取的16822条帖子,有助于增进对DCGSM的理解。结果表明,中国地方政府机构在疫情期间的DCGSM存在很大差异,总体表现不佳。此外,中国地方政府更倾向于留住访客并促成回访,而非发展对话循环和增强信息有用性。研究结果表明,公众压力和同行压力都对中国地方政府在公共卫生危机期间的DCGSM有影响。此外,公众压力的影响强于同行压力,这表明地方政府机构经历了更多需求拉动型的DCGSM。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验