Suppr超能文献

使用自然语言处理技术在精神科临床研究数据库中识别自杀意念和自杀企图。

Identifying Suicide Ideation and Suicidal Attempts in a Psychiatric Clinical Research Database using Natural Language Processing.

机构信息

Institute of Psychiatry, Psychology and Neuroscience, Academic Department of Psychological Medicine, London, SE5 8AF, United Kingdom.

UK National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, SE5 8AZ, United Kingdom.

出版信息

Sci Rep. 2018 May 9;8(1):7426. doi: 10.1038/s41598-018-25773-2.

Abstract

Research into suicide prevention has been hampered by methodological limitations such as low sample size and recall bias. Recently, Natural Language Processing (NLP) strategies have been used with Electronic Health Records to increase information extraction from free text notes as well as structured fields concerning suicidality and this allows access to much larger cohorts than previously possible. This paper presents two novel NLP approaches - a rule-based approach to classify the presence of suicide ideation and a hybrid machine learning and rule-based approach to identify suicide attempts in a psychiatric clinical database. Good performance of the two classifiers in the evaluation study suggest they can be used to accurately detect mentions of suicide ideation and attempt within free-text documents in this psychiatric database. The novelty of the two approaches lies in the malleability of each classifier if a need to refine performance, or meet alternate classification requirements arises. The algorithms can also be adapted to fit infrastructures of other clinical datasets given sufficient clinical recording practice knowledge, without dependency on medical codes or additional data extraction of known risk factors to predict suicidal behaviour.

摘要

自杀预防研究受到方法学限制的阻碍,例如样本量小和回忆偏差。最近,自然语言处理 (NLP) 策略已被用于电子健康记录,以增加对自杀和相关内容的自由文本记录以及结构化字段的信息提取,这使得可以访问比以前更大的队列。本文提出了两种新的 NLP 方法 - 一种基于规则的方法来分类是否存在自杀意念,以及一种混合机器学习和基于规则的方法来识别精神科临床数据库中的自杀企图。在评估研究中,两种分类器的良好性能表明它们可用于准确检测该精神科数据库中自由文本文档中自杀意念和企图的提及。这两种方法的新颖之处在于,如果需要改进性能或满足其他分类要求,则每个分类器的可调整性。只要有足够的临床记录实践知识,这些算法还可以适应其他临床数据集的基础设施,而无需依赖医疗代码或提取已知风险因素来预测自杀行为的额外数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c67/5943451/a6e2e3983438/41598_2018_25773_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验