The Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands.
The Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands.
Med Image Anal. 2023 May;86:102771. doi: 10.1016/j.media.2023.102771. Epub 2023 Feb 16.
Automatic lesion segmentation on thoracic CT enables rapid quantitative analysis of lung involvement in COVID-19 infections. However, obtaining a large amount of voxel-level annotations for training segmentation networks is prohibitively expensive. Therefore, we propose a weakly-supervised segmentation method based on dense regression activation maps (dRAMs). Most weakly-supervised segmentation approaches exploit class activation maps (CAMs) to localize objects. However, because CAMs were trained for classification, they do not align precisely with the object segmentations. Instead, we produce high-resolution activation maps using dense features from a segmentation network that was trained to estimate a per-lobe lesion percentage. In this way, the network can exploit knowledge regarding the required lesion volume. In addition, we propose an attention neural network module to refine dRAMs, optimized together with the main regression task. We evaluated our algorithm on 90 subjects. Results show our method achieved 70.2% Dice coefficient, substantially outperforming the CAM-based baseline at 48.6%. We published our source code at https://github.com/DIAGNijmegen/bodyct-dram.
在胸部 CT 上进行自动病变分割可实现对 COVID-19 感染肺部受累情况的快速定量分析。然而,为训练分割网络获取大量体素级别的标注数据是非常昂贵的。因此,我们提出了一种基于密集回归激活图(dRAM)的弱监督分割方法。大多数弱监督分割方法利用类激活图(CAM)来定位对象。然而,由于 CAM 是为分类而训练的,因此它们与对象分割并不完全匹配。相反,我们使用针对估计每个叶段病变百分比的分割网络的密集特征来生成高分辨率激活图。通过这种方式,网络可以利用有关所需病变体积的知识。此外,我们提出了一种注意神经网络模块来细化 dRAM,该模块与主要回归任务一起进行优化。我们在 90 名受试者上评估了我们的算法。结果表明,我们的方法的 Dice 系数达到了 70.2%,明显优于基于 CAM 的基线方法的 48.6%。我们在 https://github.com/DIAGNijmegen/bodyct-dram 上发布了我们的源代码。