Suppr超能文献

用于半监督体医学图像分割的动量对比体素级表示学习

Momentum Contrastive Voxel-wise Representation Learning for Semi-supervised Volumetric Medical Image Segmentation.

作者信息

You Chenyu, Zhao Ruihan, Staib Lawrence, Duncan James S

机构信息

Electrical Engineering, Yale University, New Haven, CT USA.

Electrical and Computer Engineering, The University of Texas at Austin, TX USA.

出版信息

Med Image Comput Comput Assist Interv. 2022 Sep;13434:639-652. doi: 10.1007/978-3-031-16440-8_61. Epub 2022 Sep 16.

Abstract

Contrastive learning (CL) aims to learn useful representation without relying on expert annotations in the context of medical image segmentation. Existing approaches mainly contrast a single positive vector (, an augmentation of the same image) against a set of negatives within the entire remainder of the batch by simply mapping all input features into the same constant vector. Despite the impressive empirical performance, those methods have the following shortcomings: (1) it remains a formidable challenge to prevent the collapsing problems to trivial solutions; and (2) we argue that not all voxels within the same image are equally positive since there exist the dissimilar anatomical structures with the same image. In this work, we present a novel ontrastive oxel-wise epresentation earning (CVRL) method to effectively learn low-level and high-level features by capturing 3D spatial context and rich anatomical information along both the feature and the batch dimensions. Specifically, we first introduce a novel CL strategy to ensure feature diversity promotion among the 3D representation dimensions. We train the framework through bi-level contrastive optimization (, low-level and high-level) on 3D images. Experiments on two benchmark datasets and different labeled settings demonstrate the superiority of our proposed framework. More importantly, we also prove that our method inherits the benefit of hardness-aware property from the standard CL approaches. Codes will be available soon.

摘要

对比学习(CL)旨在在医学图像分割的背景下,不依赖专家注释来学习有用的表示。现有方法主要通过简单地将所有输入特征映射到相同的常数向量,将单个正向量(同一图像的增强)与批次中其余部分的一组负向量进行对比。尽管在实证性能上令人印象深刻,但这些方法存在以下缺点:(1)防止崩溃到平凡解仍然是一个艰巨的挑战;(2)我们认为同一图像内并非所有体素都是同样积极的,因为同一图像中存在不同的解剖结构。在这项工作中,我们提出了一种新颖的基于体素的对比表示学习(CVRL)方法,通过沿特征和批次维度捕获3D空间上下文和丰富的解剖信息,有效地学习低级和高级特征。具体来说,我们首先引入一种新颖的对比学习策略,以确保3D表示维度之间的特征多样性提升。我们通过对3D图像进行双层对比优化(即低级和高级)来训练该框架。在两个基准数据集和不同标记设置上的实验证明了我们提出的框架的优越性。更重要的是,我们还证明了我们的方法继承了标准对比学习方法中硬度感知属性的优点。代码将很快提供。

相似文献

3
Voxel-wise adversarial semi-supervised learning for medical image segmentation.用于医学图像分割的体素级对抗半监督学习。
Comput Biol Med. 2022 Nov;150:106152. doi: 10.1016/j.compbiomed.2022.106152. Epub 2022 Sep 29.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验