IEEE Trans Med Imaging. 2021 Oct;40(10):2808-2819. doi: 10.1109/TMI.2021.3066161. Epub 2021 Sep 30.
Scarcity of annotated images hampers the building of automated solution for reliable COVID-19 diagnosis and evaluation from CT. To alleviate the burden of data annotation, we herein present a label-free approach for segmenting COVID-19 lesions in CT via voxel-level anomaly modeling that mines out the relevant knowledge from normal CT lung scans. Our modeling is inspired by the observation that the parts of tracheae and vessels, which lay in the high-intensity range where lesions belong to, exhibit strong patterns. To facilitate the learning of such patterns at a voxel level, we synthesize 'lesions' using a set of simple operations and insert the synthesized 'lesions' into normal CT lung scans to form training pairs, from which we learn a normalcy-recognizing network (NormNet) that recognizes normal tissues and separate them from possible COVID-19 lesions. Our experiments on three different public datasets validate the effectiveness of NormNet, which conspicuously outperforms a variety of unsupervised anomaly detection (UAD) methods.
注释图像的稀缺性阻碍了从 CT 中构建用于 COVID-19 可靠诊断和评估的自动化解决方案。为了减轻数据注释的负担,我们在此提出了一种基于体素级异常建模的无标签方法,该方法可以从正常 CT 肺部扫描中挖掘出相关知识,从而对 CT 中的 COVID-19 病变进行分割。我们的建模受到这样一种观察的启发,即在病变属于的高强度范围内的气管和血管部分表现出强烈的模式。为了便于在体素级别学习这种模式,我们使用一组简单的操作来合成“病变”,并将合成的“病变”插入到正常的 CT 肺部扫描中,以形成训练对,我们从这些训练对中学习一个识别正常组织并将其与可能的 COVID-19 病变分开的正常识别网络(NormNet)。我们在三个不同的公共数据集上的实验验证了 NormNet 的有效性,NormNet 明显优于各种无监督异常检测(UAD)方法。