Suppr超能文献

肺 CT 中 COVID-19 病变的无标记分割。

Label-Free Segmentation of COVID-19 Lesions in Lung CT.

出版信息

IEEE Trans Med Imaging. 2021 Oct;40(10):2808-2819. doi: 10.1109/TMI.2021.3066161. Epub 2021 Sep 30.

Abstract

Scarcity of annotated images hampers the building of automated solution for reliable COVID-19 diagnosis and evaluation from CT. To alleviate the burden of data annotation, we herein present a label-free approach for segmenting COVID-19 lesions in CT via voxel-level anomaly modeling that mines out the relevant knowledge from normal CT lung scans. Our modeling is inspired by the observation that the parts of tracheae and vessels, which lay in the high-intensity range where lesions belong to, exhibit strong patterns. To facilitate the learning of such patterns at a voxel level, we synthesize 'lesions' using a set of simple operations and insert the synthesized 'lesions' into normal CT lung scans to form training pairs, from which we learn a normalcy-recognizing network (NormNet) that recognizes normal tissues and separate them from possible COVID-19 lesions. Our experiments on three different public datasets validate the effectiveness of NormNet, which conspicuously outperforms a variety of unsupervised anomaly detection (UAD) methods.

摘要

注释图像的稀缺性阻碍了从 CT 中构建用于 COVID-19 可靠诊断和评估的自动化解决方案。为了减轻数据注释的负担,我们在此提出了一种基于体素级异常建模的无标签方法,该方法可以从正常 CT 肺部扫描中挖掘出相关知识,从而对 CT 中的 COVID-19 病变进行分割。我们的建模受到这样一种观察的启发,即在病变属于的高强度范围内的气管和血管部分表现出强烈的模式。为了便于在体素级别学习这种模式,我们使用一组简单的操作来合成“病变”,并将合成的“病变”插入到正常的 CT 肺部扫描中,以形成训练对,我们从这些训练对中学习一个识别正常组织并将其与可能的 COVID-19 病变分开的正常识别网络(NormNet)。我们在三个不同的公共数据集上的实验验证了 NormNet 的有效性,NormNet 明显优于各种无监督异常检测(UAD)方法。

相似文献

1
Label-Free Segmentation of COVID-19 Lesions in Lung CT.肺 CT 中 COVID-19 病变的无标记分割。
IEEE Trans Med Imaging. 2021 Oct;40(10):2808-2819. doi: 10.1109/TMI.2021.3066161. Epub 2021 Sep 30.

引用本文的文献

7
Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation.增量学习与迁移学习相结合:在多站点前列腺MRI分割中的应用
Distrib Collab Fed Learn Afford AI Healthc Resour Div Glob Health (2022). 2022 Sep;13573:3-16. doi: 10.1007/978-3-031-18523-6_1. Epub 2022 Oct 7.

本文引用的文献

3
Serial Quantitative Chest CT Assessment of COVID-19: A Deep Learning Approach.COVID-19的胸部CT序列定量评估:一种深度学习方法。
Radiol Cardiothorac Imaging. 2020 Mar 30;2(2):e200075. doi: 10.1148/ryct.2020200075. eCollection 2020 Apr.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验