Suppr超能文献

社会决定因素和心血管代谢因素对哥伦比亚服务不足人群认知和功能衰老的影响。

The impacts of social determinants of health and cardiometabolic factors on cognitive and functional aging in Colombian underserved populations.

机构信息

Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA.

Pontificia Universidad Javeriana (Ph.D. Program in Neuroscience, Department of Psychiatry), Bogotá, Colombia.

出版信息

Geroscience. 2023 Aug;45(4):2405-2423. doi: 10.1007/s11357-023-00755-z. Epub 2023 Feb 28.

Abstract

Global initiatives call for further understanding of the impact of inequity on aging across underserved populations. Previous research in low- and middle-income countries (LMICs) presents limitations in assessing combined sources of inequity and outcomes (i.e., cognition and functionality). In this study, we assessed how social determinants of health (SDH), cardiometabolic factors (CMFs), and other medical/social factors predict cognition and functionality in an aging Colombian population. We ran a cross-sectional study that combined theory- (structural equation models) and data-driven (machine learning) approaches in a population-based study (N = 23,694; M = 69.8 years) to assess the best predictors of cognition and functionality. We found that a combination of SDH and CMF accurately predicted cognition and functionality, although SDH was the stronger predictor. Cognition was predicted with the highest accuracy by SDH, followed by demographics, CMF, and other factors. A combination of SDH, age, CMF, and additional physical/psychological factors were the best predictors of functional status. Results highlight the role of inequity in predicting brain health and advancing solutions to reduce the cognitive and functional decline in LMICs.

摘要

全球倡议呼吁进一步了解服务不足人群老龄化过程中不平等现象的影响。先前在低收入和中等收入国家(LMICs)的研究在评估不平等的综合来源和结果(即认知和功能)方面存在局限性。在这项研究中,我们评估了健康的社会决定因素(SDH)、心血管代谢因素(CMFs)和其他医疗/社会因素如何预测哥伦比亚老年人群的认知和功能。我们进行了一项横断面研究,该研究结合了基于理论(结构方程模型)和数据驱动(机器学习)的方法,对一项基于人群的研究(N=23694;M=69.8 岁)进行了评估,以确定认知和功能的最佳预测因素。我们发现,SDH 和 CMF 的组合可以准确预测认知和功能,尽管 SDH 是更强的预测因素。SDH 对认知的预测准确性最高,其次是人口统计学、CMF 和其他因素。SDH、年龄、CMF 和其他身体/心理因素的组合是预测功能状态的最佳因素。研究结果强调了不平等在预测大脑健康和推进解决方案方面的作用,以减少 LMICs 的认知和功能下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7637/10651610/645cc0aa0e8e/11357_2023_755_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验