Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China.
BMC Genom Data. 2023 Feb 27;24(1):12. doi: 10.1186/s12863-022-01098-y.
The peaberry bean in Arabica coffee has exceptional quality compared to the regular coffee bean. Understanding the molecular mechanism of bean quality is imperative to introduce superior coffee quality traits. Despite high economic importance, the regulatory aspects of bean quality are yet largely unknown in peaberry. A transcriptome analysis was performed by using peaberry and regular coffee beans in this study.
The result of phenotypic analysis stated a difference in the physical attributes of both coffee beans. In addition, transcriptome analysis revealed low genetic differences. Only 139 differentially expressed genes were detected in which 54 genes exhibited up-regulation and 85 showed down-regulations in peaberry beans compared to regular beans. The majority of differentially expressed genes had functional annotation with cell wall modification, lipid binding, protein binding, oxidoreductase activity, and transmembrane transportation. Many fold lower expression of Ca25840-PMEs1, Ca30827-PMEs2, Ca30828-PMEs3, Ca25839-PMEs4, Ca36469-PGs. and Ca03656-Csl genes annotated with cell wall modification might play a critical role to develop different bean shape patterns in Arabica. The ERECTA family genes Ca15802-ERL1, Ca99619-ERL2, Ca07439-ERL3, Ca97226-ERL4, Ca89747-ERL5, Ca07056-ERL6, Ca01141-ERL7, and Ca32419-ERL8 along lipid metabolic pathway genes Ca06708-ACOX1, Ca29177-ACOX2, Ca01563-ACOX3, Ca34321-CPFA1, and Ca36201-CPFA2 are predicted to regulate different shaped bean development. In addition, flavonoid biosynthesis correlated genes Ca03809-F3H, Ca95013-CYP75A1, and Ca42029-CYP75A2 probably help to generate rarely formed peaberry beans.
Our results provide molecular insights into the formation of peaberry. The data resources will be important to identify candidate genes correlated with the different bean shape patterns in Arabica.
与普通咖啡豆相比,阿拉比卡咖啡豆中的珍珠豆具有卓越的品质。了解咖啡豆品质的分子机制对于引入优良的咖啡品质特征至关重要。尽管具有很高的经济重要性,但珍珠豆的豆质调节方面在很大程度上仍然未知。本研究通过使用珍珠豆和普通咖啡豆进行了转录组分析。
表型分析的结果表明,两种咖啡豆在物理属性上存在差异。此外,转录组分析显示遗传差异很小。与普通豆相比,珍珠豆中仅检测到 139 个差异表达基因,其中 54 个基因上调,85 个基因下调。大多数差异表达基因具有细胞壁修饰、脂质结合、蛋白质结合、氧化还原酶活性和跨膜运输的功能注释。Ca25840-PMEs1、Ca30827-PMEs2、Ca30828-PMEs3、Ca25839-PMEs4、Ca36469-PGs. 和 Ca03656-Csl 等基因的表达水平低得多,这些基因注释为细胞壁修饰,可能在形成不同的阿拉比卡咖啡豆形状模式中发挥关键作用。细胞伸长因子家族基因 Ca15802-ERL1、Ca99619-ERL2、Ca07439-ERL3、Ca97226-ERL4、Ca89747-ERL5、Ca07056-ERL6、Ca01141-ERL7 和 Ca32419-ERL8 以及脂质代谢途径基因 Ca06708-ACOX1、Ca29177-ACOX2、Ca01563-ACOX3、Ca34321-CPFA1 和 Ca36201-CPFA2 沿预测调节不同形状的豆粒发育。此外,类黄酮生物合成相关基因 Ca03809-F3H、Ca95013-CYP75A1 和 Ca42029-CYP75A2 可能有助于产生罕见的珍珠豆。
我们的研究结果为珍珠豆的形成提供了分子见解。这些数据资源对于鉴定与阿拉比卡不同豆形模式相关的候选基因将非常重要。