Suppr超能文献

新型冠状病毒肺炎每日病死率多重指数衰减的估计与预测

Estimation and prediction of the multiply exponentially decaying daily case fatality rate of COVID-19.

作者信息

Kwak Soobin, Ham Seokjun, Hwang Youngjin, Kim Junseok

机构信息

Seoul, 02841 Republic of Korea Department of Mathematics, Korea University.

出版信息

J Supercomput. 2023;79(10):11159-11169. doi: 10.1007/s11227-023-05119-0. Epub 2023 Feb 23.

Abstract

The spread of the COVID-19 disease has had significant social and economic impacts all over the world. Numerous measures such as school closures, social distancing, and travel restrictions were implemented during the COVID-19 pandemic outbreak. Currently, as we move into the post-COVID-19 world, we must be prepared for another pandemic outbreak in the future. Having experienced the COVID-19 pandemic, it is imperative to ascertain the conclusion of the pandemic to return to normalcy and plan for the future. One of the beneficial features for deciding the termination of the pandemic disease is the small value of the case fatality rate (CFR) of coronavirus disease 2019 (COVID-19). There is a tendency of gradually decreasing CFR after several increases in CFR during the COVID-19 pandemic outbreak. However, it is difficult to capture the time-dependent CFR of a pandemic outbreak using a single exponential coefficient because it contains multiple exponential decays, i.e., fast and slow decays. Therefore, in this study, we develop a mathematical model for estimating and predicting the multiply exponentially decaying CFRs of the COVID-19 pandemic in different nations: the Republic of Korea, the USA, Japan, and the UK. We perform numerical experiments to validate the proposed method with COVID-19 data from the above-mentioned four nations.

摘要

2019冠状病毒病(COVID-19)的传播在全球范围内产生了重大的社会和经济影响。在COVID-19大流行爆发期间,实施了许多措施,如学校关闭、社交距离限制和旅行限制。目前,随着我们进入后COVID-19时代,我们必须为未来可能发生的另一次大流行爆发做好准备。经历了COVID-19大流行后,确定大流行的结束以恢复正常并规划未来势在必行。决定大流行疾病终止的一个有益特征是2019冠状病毒病(COVID-19)的病死率(CFR)值较低。在COVID-19大流行爆发期间,病死率在几次上升后有逐渐下降的趋势。然而,由于大流行爆发的时间依赖性病死率包含多个指数衰减,即快速衰减和缓慢衰减,因此很难用单个指数系数来捕捉。因此,在本研究中,我们开发了一个数学模型,用于估计和预测韩国、美国、日本和英国等不同国家COVID-19大流行的多重指数衰减病死率。我们进行了数值实验,以验证所提出的方法与上述四个国家的COVID-19数据的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88a3/9947897/18111c34a0dc/11227_2023_5119_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验