Suppr超能文献

使用语义分割、定量特征、支持向量机、集成和多路径卷积神经网络进行胎盘早剥自动识别。

Automated placental abruption identification using semantic segmentation, quantitative features, SVM, ensemble and multi-path CNN.

作者信息

Asadpour Vahid, Puttock Eric J, Getahun Darios, Fassett Michael J, Xie Fagen

机构信息

Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.

Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA.

出版信息

Heliyon. 2023 Feb 11;9(2):e13577. doi: 10.1016/j.heliyon.2023.e13577. eCollection 2023 Feb.

Abstract

The placenta is a fundamental organ throughout the pregnancy and the fetus' health is closely related to its proper function. Because of the importance of the placenta, any suspicious placental conditions require ultrasound image investigation. We propose an automated method for processing fetal ultrasonography images to identify placental abruption using machine learning methods in this paper. The placental imaging characteristics are used as the semantic identifiers of the region of the placenta compared with the amniotic fluid and hard organs. The quantitative feature extraction is applied to the automatically identified placental regions to assign a vector of optical features to each ultrasonographic image. In the first classification step, two methods of kernel-based Support Vector Machine (SVM) and decision tree Ensemble classifier are elaborated and compared for identification of the abruption cases and controls. The Recursive Feature Elimination (RFE) is applied for optimizing the feature vector elements for the best performance of each classifier. In the second step, the deep learning classifiers of multi-path ResNet-50 and Inception-V3 are used in combination with RFE. The resulting performances of the algorithms are compared together to reveal the best classification method for the identification of the abruption status. The best results were achieved for optimized ResNet-50 with an accuracy of 82.88% ± SD 1.42% in the identification of placental abruption on the testing dataset. These results show it is possible to construct an automated analysis method with affordable performance for the detection of placental abruption based on ultrasound images.

摘要

胎盘是整个孕期的一个重要器官,胎儿的健康与胎盘的正常功能密切相关。由于胎盘的重要性,任何可疑的胎盘状况都需要进行超声图像检查。在本文中,我们提出了一种利用机器学习方法处理胎儿超声图像以识别胎盘早剥的自动化方法。与羊水和硬器官相比,胎盘的成像特征被用作胎盘区域的语义标识符。将定量特征提取应用于自动识别的胎盘区域,为每个超声图像分配一个光学特征向量。在第一个分类步骤中,详细阐述并比较了基于核的支持向量机(SVM)和决策树集成分类器这两种方法,用于识别早剥病例和对照。应用递归特征消除(RFE)来优化特征向量元素,以实现每个分类器的最佳性能。在第二步中,将多路径ResNet - 50和Inception - V3的深度学习分类器与RFE结合使用。将算法的最终性能进行比较,以揭示识别早剥状态的最佳分类方法。在测试数据集上识别胎盘早剥时,优化后的ResNet - 50取得了最佳结果,准确率为82.88%±标准差1.42%。这些结果表明,基于超声图像构建一种性能可承受的胎盘早剥检测自动化分析方法是可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29d7/9957707/cad60f49d7aa/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验