Huo Yuankai, Tang Yucheng, Chen Yunqiang, Gao Dashan, Han Shizhong, Bao Shunxing, De Smita, Terry James G, Carr Jeffrey J, Abramson Richard G, Landman Bennett A
Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States.
12 Sigma Technologies, San Diego, California, United States.
J Med Imaging (Bellingham). 2019 Oct;6(4):044005. doi: 10.1117/1.JMI.6.4.044005. Epub 2019 Nov 20.
Tissue window filtering has been widely used in deep learning for computed tomography (CT) image analyses to improve training performance (e.g., soft tissue windows for abdominal CT). However, the effectiveness of tissue window normalization is questionable since the generalizability of the trained model might be further harmed, especially when such models are applied to new cohorts with different CT reconstruction kernels, contrast mechanisms, dynamic variations in the acquisition, and physiological changes. We evaluate the effectiveness of both with and without using soft tissue window normalization on multisite CT cohorts. Moreover, we propose a stochastic tissue window normalization (SWN) method to improve the generalizability of tissue window normalization. Different from the random sampling, the SWN method centers the randomization around the soft tissue window to maintain the specificity for abdominal organs. To evaluate the performance of different strategies, 80 training and 453 validation and testing scans from six datasets are employed to perform multiorgan segmentation using standard 2D U-Net. The six datasets cover the scenarios, where the training and testing scans are from (1) same scanner and same population, (2) same CT contrast but different pathology, and (3) different CT contrast and pathology. The traditional soft tissue window and nonwindowed approaches achieved better performance on (1). The proposed SWN achieved general superior performance on (2) and (3) with statistical analyses, which offers better generalizability for a trained model.
组织窗过滤已广泛应用于深度学习中的计算机断层扫描(CT)图像分析,以提高训练性能(例如,腹部CT的软组织窗)。然而,组织窗归一化的有效性值得怀疑,因为训练模型的通用性可能会进一步受到损害,特别是当这些模型应用于具有不同CT重建内核、对比机制、采集动态变化和生理变化的新队列时。我们评估了在多站点CT队列中使用和不使用软组织窗归一化的有效性。此外,我们提出了一种随机组织窗归一化(SWN)方法来提高组织窗归一化的通用性。与随机采样不同,SWN方法将随机化集中在软组织窗周围,以保持对腹部器官的特异性。为了评估不同策略的性能,使用来自六个数据集的80次训练扫描以及453次验证和测试扫描,通过标准的二维U-Net进行多器官分割。这六个数据集涵盖了以下几种情况:训练和测试扫描来自(1)同一台扫描仪和同一人群,(2)相同的CT对比但不同的病理情况,以及(3)不同的CT对比和病理情况。传统的软组织窗方法和无窗方法在(1)的情况下表现更好。通过统计分析,所提出的SWN在(2)和(3)的情况下总体表现更优,这为训练模型提供了更好的通用性。