Subczynski Witold K, Widomska Justyna, Raguz Marija, Pasenkiewicz-Gierula Marta
Department of Biophysics, Medical College on Wisconsin, Milwaukee, United States.
Department of Biophysics, Medical University of Lublin, Lublin, Poland.
Oxygen (Basel). 2022 Sep;2(3):295-316. doi: 10.3390/oxygen2030021. Epub 2022 Aug 4.
Molecular oxygen (O) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane's different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin-lattice relaxation times ( ) of spin labels and rates of bimolecular collisions between O and the nitroxide fragment. Thanks to the long of lipid spin labels (from 1 to 10 μs), the approach is very sensitive to changes of the local (around the nitroxide fragment) O diffusion-concentration product. Small variations in the lipid packing affect O solubility and O diffusion, which can be detected by the shortening of of spin labels. Using O as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics, and, hence, the membrane properties in three dimensions.
分子氧(O)是使用饱和恢复电子顺磁共振(EPR)技术进行膜研究的理想探针分子。O是一种小的、顺磁性的、疏水性足够的分子,它很容易分配到膜的不同相和区域中。在膜研究中,饱和恢复EPR方法需要两种顺磁性探针:一种脂质类似物氮氧化物自旋标记物和一个氧分子。该方法通过实验得出的参数是自旋标记物的自旋晶格弛豫时间( )以及O与氮氧化物片段之间的双分子碰撞速率。由于脂质自旋标记物的 较长(从1到10微秒),该方法对局部(氮氧化物片段周围)O扩散 - 浓度乘积的变化非常敏感。脂质堆积的微小变化会影响O的溶解度和O的扩散,这可以通过自旋标记物的 缩短来检测。使用O作为探针分子,并将不同的脂质自旋标记物插入膜和膜区域的特定相中,可以获得有关脂质膜横向排列的数据。此外,使用氮氧化物片段连接在其头部基团或不同位置的烃链上的脂质自旋标记物,还能够获得有关不同膜深度处分子动力学和结构的数据。因此,该方法不仅可用于研究膜的横向组织(即膜区域和相的存在),还可用于研究深度依赖的膜结构和动力学,从而研究三维的膜特性。