Suppr超能文献

伪黎曼空间形式中的多重调和超曲面。

Polyharmonic hypersurfaces into pseudo-Riemannian space forms.

作者信息

Branding V, Montaldo S, Oniciuc C, Ratto A

机构信息

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.

Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.

出版信息

Ann Mat Pura Appl. 2023;202(2):877-899. doi: 10.1007/s10231-022-01263-1. Epub 2022 Sep 16.

Abstract

In this paper, we shall assume that the ambient manifold is a pseudo-Riemannian space form of dimension and index ( and ). We shall study hypersurfaces which are polyharmonic of order (briefly, -harmonic), where and either or . Let denote the shape operator of . Under the assumptions that is CMC and is a constant, we shall obtain the general condition which determines that is -harmonic. As a first application, we shall deduce the existence of several new families of proper -harmonic hypersurfaces with diagonalizable shape operator, and we shall also obtain some results in the direction that our examples are the only possible ones provided that certain assumptions on the principal curvatures hold. Next, we focus on the study of isoparametric hypersurfaces whose shape operator is non-diagonalizable and also in this context we shall prove the existence of some new examples of proper -harmonic hypersurfaces ( ). Finally, we shall obtain the complete classification of proper -harmonic isoparametric pseudo-Riemannian surfaces into a three-dimensional Lorentz space form.

摘要

在本文中,我们假设环境流形是一个维度为(n)且指标为(q)((n\geq3)且(1\leq q\leq n - 1))的伪黎曼空间形式。我们将研究(m)阶多重调和(简称为(m -)调和)的超曲面,其中(m\geq1)且要么(m\geq2)要么(m = 1)。设(S)表示(M)的形状算子。在(M)是常平均曲率(CMC)且(H)是常数的假设下,我们将得到确定(M)是(m -)调和的一般条件。作为第一个应用,我们将推导出几个具有可对角化形状算子的新的恰当(m -)调和超曲面族的存在性,并且我们还将在主曲率满足某些假设的情况下得到一些结果,表明我们的例子是唯一可能的。接下来,我们专注于研究形状算子不可对角化的等参超曲面,并且在这种情况下我们也将证明一些恰当(m -)调和超曲面((m\geq2))的新例子的存在性。最后,我们将得到恰当(m -)调和等参伪黎曼曲面到三维洛伦兹空间形式的完全分类。

相似文献

1
Polyharmonic hypersurfaces into pseudo-Riemannian space forms.
Ann Mat Pura Appl. 2023;202(2):877-899. doi: 10.1007/s10231-022-01263-1. Epub 2022 Sep 16.
3
On the Normal Stability of Triharmonic Hypersurfaces in Space Forms.
J Geom Anal. 2023;33(11):355. doi: 10.1007/s12220-023-01414-7. Epub 2023 Aug 29.
4
Nonexistence of stable -stationary maps of a functional related to pullback metrics.
J Inequal Appl. 2017;2017(1):214. doi: 10.1186/s13660-017-1483-z. Epub 2017 Sep 8.
5
The qualitative behavior at the free boundary for approximate harmonic maps from surfaces.
Math Ann. 2019;374(1):133-177. doi: 10.1007/s00208-018-1759-8. Epub 2018 Sep 24.
6
Injectivity and Stability for a Generic Class of Generalized Radon Transforms.
J Geom Anal. 2017;27(2):1515-1529. doi: 10.1007/s12220-016-9729-4. Epub 2016 Jun 30.
7
Harmonic maps of S into a complex Grassmann manifold.
Proc Natl Acad Sci U S A. 1985 Apr;82(8):2217-9. doi: 10.1073/pnas.82.8.2217.
8
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n.
An Acad Bras Cienc. 2021 Dec 3;93(suppl 3):e20190329. doi: 10.1590/0001-3765202120190329. eCollection 2021.
9
D'Atri spaces and the total scalar curvature of hemispheres, tubes and cylinders.
Rev Mat Complut. 2023;36(3):887-898. doi: 10.1007/s13163-022-00444-z. Epub 2022 Oct 10.
10
Chen's Ricci inequalities and topological obstructions on null hypersurfaces of a Lorentzian manifold.
J Inequal Appl. 2018;2018(1):126. doi: 10.1186/s13660-018-1714-y. Epub 2018 May 29.

引用本文的文献

1
On the Normal Stability of Triharmonic Hypersurfaces in Space Forms.
J Geom Anal. 2023;33(11):355. doi: 10.1007/s12220-023-01414-7. Epub 2023 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验