Suppr超能文献

精神分裂症中的连接异常与认知:一项基于谱动态因果建模的研究。

Dysconnection and cognition in schizophrenia: A spectral dynamic causal modeling study.

机构信息

Bio-Electric Department, School of Electrical and Computer Engineering, College of Engineering, University of Teran, Tehran, Iran.

Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.

出版信息

Hum Brain Mapp. 2023 May;44(7):2873-2896. doi: 10.1002/hbm.26251. Epub 2023 Feb 28.

Abstract

Schizophrenia (SZ) is a severe mental disorder characterized by failure of functional integration (aka dysconnection) across the brain. Recent functional connectivity (FC) studies have adopted functional parcellations to define subnetworks of large-scale networks, and to characterize the (dys)connection between them, in normal and clinical populations. While FC examines statistical dependencies between observations, model-based effective connectivity (EC) can disclose the causal influences that underwrite the observed dependencies. In this study, we investigated resting state EC within seven large-scale networks, in 66 SZ and 74 healthy subjects from a public dataset. The results showed that a remarkable 33% of the effective connections (among subnetworks) of the cognitive control network had been pathologically modulated in SZ. Further dysconnection was identified within the visual, default mode and sensorimotor networks of SZ subjects, with 24%, 20%, and 11% aberrant couplings. Overall, the proportion of discriminative connections was remarkably larger in EC (24%) than FC (1%) analysis. Subsequently, to study the neural correlates of impaired cognition in SZ, we conducted a canonical correlation analysis between the EC parameters and the cognitive scores of the patients. As such, the self-inhibitions of supplementary motor area and paracentral lobule (in the sensorimotor network) and the excitatory connection from parahippocampal gyrus to inferior temporal gyrus (in the cognitive control network) were significantly correlated with the social cognition, reasoning/problem solving and working memory capabilities of the patients. Future research can investigate the potential of whole-brain EC as a biomarker for diagnosis of brain disorders and for neuroimaging-based cognitive assessment.

摘要

精神分裂症(SZ)是一种严重的精神障碍,其特征是大脑功能整合(又称连接中断)失败。最近的功能连接(FC)研究采用功能分区来定义大尺度网络的子网,并描述它们之间的(异常)连接,包括正常和临床人群。虽然 FC 研究了观察值之间的统计依赖性,但基于模型的有效连接(EC)可以揭示构成观察依赖性的因果影响。在这项研究中,我们在来自公共数据集的 66 名 SZ 和 74 名健康受试者中,研究了七个大尺度网络的静息状态 EC。结果表明,在 SZ 中,认知控制网络的 33%的有效连接(子网之间)已经发生了病理性调节。SZ 受试者的视觉、默认模式和感觉运动网络中也存在进一步的连接中断,异常耦合比例分别为 24%、20%和 11%。总的来说,EC(24%)分析中可区分连接的比例明显大于 FC(1%)分析。随后,为了研究 SZ 中认知障碍的神经相关性,我们在 EC 参数和患者的认知评分之间进行了典型相关分析。因此,补充运动区和旁中央小叶(感觉运动网络)的自我抑制以及海马旁回到颞下回的兴奋连接(认知控制网络)与患者的社会认知、推理/解决问题和工作记忆能力显著相关。未来的研究可以探索全脑 EC 作为脑疾病诊断和基于神经影像学的认知评估的生物标志物的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2ed/10089110/bf69cd10e6fc/HBM-44-2873-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验