Andalib K M Salim, Rahman Md Habibur, Habib Ahsan
Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh.
J Biomol Struct Dyn. 2023;41(23):14232-14247. doi: 10.1080/07391102.2023.2179542. Epub 2023 Feb 28.
Cervical cancer (CC) is a global threat to women and our knowledge is frighteningly little about its underlying genomic contributors. Our research aimed to understand the underlying molecular and genetic mechanisms of CC by integrating bioinformatics and network-based study. Transcriptomic analyses of three microarray datasets identified 218 common differentially expressed genes (DEGs) within control samples and CC specimens. KEGG pathway analysis revealed pathways in cell cycle, drug metabolism, DNA replication and the significant GO terms were cornification, proteolysis, cell division and DNA replication. Protein-protein interaction (PPI) network analysis identified 20 hub genes and survival analyses validated CDC45, MCM2, PCNA and TOP2A as CC biomarkers. Subsequently, 10 transcriptional factors (TFs) and 10 post-transcriptional regulators were detected through TFs-DEGs and miRNAs-DEGs regulatory network assessment. Finally, the CC biomarkers were subjected to a drug-gene relationship analysis to find the best target inhibitors. Standard cheminformatics method including ADMET and molecular docking study substantiated PD0325901 and Selumetinib as the most potent candidate-drug for CC treatment. Overall, this meticulous study holds promises for further and research on CC diagnosis, prognosis and therapies. Communicated by Ramaswamy H. Sarma.
宫颈癌(CC)是对全球女性的一种威胁,而我们对其潜在基因组促成因素的了解少得惊人。我们的研究旨在通过整合生物信息学和基于网络的研究来了解CC的潜在分子和遗传机制。对三个微阵列数据集的转录组分析确定了对照样本和CC标本中218个常见的差异表达基因(DEG)。KEGG通路分析揭示了细胞周期、药物代谢、DNA复制等通路,显著的基因本体(GO)术语包括角化、蛋白水解、细胞分裂和DNA复制。蛋白质-蛋白质相互作用(PPI)网络分析确定了20个枢纽基因,生存分析验证了细胞分裂周期蛋白45(CDC45)、微小染色体维持蛋白2(MCM2)、增殖细胞核抗原(PCNA)和拓扑异构酶IIα(TOP2A)作为CC生物标志物。随后,通过转录因子-差异表达基因(TFs-DEGs)和微小RNA-差异表达基因(miRNAs-DEGs)调控网络评估检测到10个转录因子(TF)和10个转录后调节因子。最后,对CC生物标志物进行药物-基因关系分析以找到最佳的靶向抑制剂。包括药物代谢动力学、药物毒性预测及药物基因组学(ADMET)和分子对接研究在内的标准化学信息学方法证实,PD0325901和司美替尼是CC治疗最有效的候选药物。总体而言,这项细致的研究为CC的诊断、预后和治疗的进一步研究带来了希望。由拉马斯瓦米·H·萨尔马通讯。