Suppr超能文献

基于注意力机制和双向门控循环单元的多导睡眠图睡眠阶段分期方法研究

[Study on the method of polysomnography sleep stage staging based on attention mechanism and bidirectional gate recurrent unit].

作者信息

Liu Ying, He Changle, Yuan Chengmei, Zhang Haowei, Ji Caojun

机构信息

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

Sleep disorder ward of clinical psychology department, Shanghai Mental Health Center, Shanghai 200030, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Feb 25;40(1):35-43. doi: 10.7507/1001-5515.202208017.

Abstract

Polysomnography (PSG) monitoring is an important method for clinical diagnosis of diseases such as insomnia, apnea and so on. In order to solve the problem of time-consuming and energy-consuming sleep stage staging of sleep disorder patients using manual frame-by-frame visual judgment PSG, this study proposed a deep learning algorithm model combining convolutional neural networks (CNN) and bidirectional gate recurrent neural networks (Bi GRU). A dynamic sparse self-attention mechanism was designed to solve the problem that gated recurrent neural networks (GRU) is difficult to obtain accurate vector representation of long-distance information. This study collected 143 overnight PSG data of patients from Shanghai Mental Health Center with sleep disorders, which were combined with 153 overnight PSG data of patients from the open-source dataset, and selected 9 electrophysiological channel signals including 6 electroencephalogram (EEG) signal channels, 2 electrooculogram (EOG) signal channels and a single mandibular electromyogram (EMG) signal channel. These data were used for model training, testing and evaluation. After cross validation, the accuracy was (84.0±2.0)%, and Cohen's kappa value was 0.77±0.50. It showed better performance than the Cohen's kappa value of physician score of 0.75±0.11. The experimental results show that the algorithm model in this paper has a high staging effect in different populations and is widely applicable. It is of great significance to assist clinicians in rapid and large-scale PSG sleep automatic staging.

摘要

多导睡眠图(PSG)监测是临床诊断失眠、呼吸暂停等疾病的重要方法。为了解决使用人工逐帧视觉判断PSG对睡眠障碍患者进行睡眠阶段分期耗时耗力的问题,本研究提出了一种结合卷积神经网络(CNN)和双向门控循环神经网络(Bi GRU)的深度学习算法模型。设计了一种动态稀疏自注意力机制来解决门控循环神经网络(GRU)难以获得长距离信息准确向量表示的问题。本研究收集了上海精神卫生中心143例睡眠障碍患者的整夜PSG数据,并与开源数据集中153例患者的整夜PSG数据相结合,选取了9种电生理通道信号,包括6个脑电图(EEG)信号通道、2个眼电图(EOG)信号通道和1个下颌肌电图(EMG)信号通道。这些数据用于模型训练、测试和评估。经过交叉验证,准确率为(84.0±2.0)%,Cohen's kappa值为0.77±0.50。其表现优于医生评分的Cohen's kappa值0.75±0.11。实验结果表明,本文的算法模型在不同人群中具有较高的分期效果,具有广泛的适用性。这对于协助临床医生进行快速、大规模的PSG睡眠自动分期具有重要意义。

相似文献

1
[Study on the method of polysomnography sleep stage staging based on attention mechanism and bidirectional gate recurrent unit].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Feb 25;40(1):35-43. doi: 10.7507/1001-5515.202208017.
2
An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection.
Sensors (Basel). 2023 May 21;23(10):4950. doi: 10.3390/s23104950.
3
Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds.
Comput Methods Programs Biomed. 2019 Sep;178:19-30. doi: 10.1016/j.cmpb.2019.06.008. Epub 2019 Jun 10.
4
[Multi-modal physiological time-frequency feature extraction network for accurate sleep stage classification].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):26-33. doi: 10.7507/1001-5515.202306010.
7
Accurate Deep Learning-Based Sleep Staging in a Clinical Population With Suspected Obstructive Sleep Apnea.
IEEE J Biomed Health Inform. 2020 Jul;24(7):2073-2081. doi: 10.1109/JBHI.2019.2951346. Epub 2019 Dec 19.
10
A novel sleep stage scoring system: Combining expert-based features with the generalized linear model.
J Sleep Res. 2020 Oct;29(5):e12991. doi: 10.1111/jsr.12991. Epub 2020 Feb 7.

本文引用的文献

1
Inter-database validation of a deep learning approach for automatic sleep scoring.
PLoS One. 2021 Aug 16;16(8):e0256111. doi: 10.1371/journal.pone.0256111. eCollection 2021.
2
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM.
Chaos Solitons Fractals. 2020 Nov;140:110212. doi: 10.1016/j.chaos.2020.110212. Epub 2020 Aug 19.
4
A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures.
Neural Comput. 2019 Jul;31(7):1235-1270. doi: 10.1162/neco_a_01199. Epub 2019 May 21.
5
A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals.
Int J Environ Res Public Health. 2019 Feb 19;16(4):599. doi: 10.3390/ijerph16040599.
6
Interrater agreement between American and Chinese sleep centers according to the 2014 AASM standard.
Sleep Breath. 2019 Jun;23(2):719-728. doi: 10.1007/s11325-019-01801-x. Epub 2019 Feb 19.
7
A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series.
IEEE Trans Neural Syst Rehabil Eng. 2018 Apr;26(4):758-769. doi: 10.1109/TNSRE.2018.2813138.
8
Deep Learning in Neuroradiology.
AJNR Am J Neuroradiol. 2018 Oct;39(10):1776-1784. doi: 10.3174/ajnr.A5543. Epub 2018 Feb 1.
9
DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.
IEEE Trans Neural Syst Rehabil Eng. 2017 Nov;25(11):1998-2008. doi: 10.1109/TNSRE.2017.2721116. Epub 2017 Jun 28.
10
AASM Scoring Manual Updates for 2017 (Version 2.4).
J Clin Sleep Med. 2017 May 15;13(5):665-666. doi: 10.5664/jcsm.6576.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验