Suppr超能文献

一种使用多变量和多模态时间序列进行时间睡眠阶段分类的深度学习架构。

A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Apr;26(4):758-769. doi: 10.1109/TNSRE.2018.2813138.

Abstract

Sleep stage classification constitutes an important preliminary exam in the diagnosis of sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30 s of the signal of a sleep stage, based on the visual inspection of signals such as electroencephalograms (EEGs), electrooculograms (EOGs), electrocardiograms, and electromyograms (EMGs). We introduce here the first deep learning approach for sleep stage classification that learns end-to-end without computing spectrograms or extracting handcrafted features, that exploits all multivariate and multimodal polysomnography (PSG) signals (EEG, EMG, and EOG), and that can exploit the temporal context of each 30-s window of data. For each modality, the first layer learns linear spatial filters that exploit the array of sensors to increase the signal-to-noise ratio, and the last layer feeds the learnt representation to a softmax classifier. Our model is compared to alternative automatic approaches based on convolutional networks or decisions trees. Results obtained on 61 publicly available PSG records with up to 20 EEG channels demonstrate that our network architecture yields the state-of-the-art performance. Our study reveals a number of insights on the spatiotemporal distribution of the signal of interest: a good tradeoff for optimal classification performance measured with balanced accuracy is to use 6 EEG with 2 EOG (left and right) and 3 EMG chin channels. Also exploiting 1 min of data before and after each data segment offers the strongest improvement when a limited number of channels are available. As sleep experts, our system exploits the multivariate and multimodal nature of PSG signals in order to deliver the state-of-the-art classification performance with a small computational cost.

摘要

睡眠阶段分类是睡眠障碍诊断的重要初步检查。传统上,它由睡眠专家完成,根据脑电图(EEG)、眼电图(EOG)、心电图和肌电图(EMG)等信号的视觉检查,为信号的每 30 秒分配一个睡眠阶段。我们在这里引入了第一个用于睡眠阶段分类的深度学习方法,它无需计算频谱图或提取手工制作的特征,即可端到端地学习,利用所有多变量和多模态多导睡眠图(PSG)信号(EEG、EMG 和 EOG),并可以利用每个 30 秒数据窗口的时间上下文。对于每个模态,第一层学习利用传感器阵列来提高信噪比的线性空间滤波器,最后一层将学习到的表示形式馈送到 softmax 分类器。我们的模型与基于卷积网络或决策树的替代自动方法进行了比较。在 61 个公开可用的 PSG 记录上进行的结果,其中多达 20 个 EEG 通道,证明了我们的网络架构具有最先进的性能。我们的研究揭示了一些关于感兴趣信号的时空分布的见解:使用 6 个 EEG 与 2 个 EOG(左和右)和 3 个 chin EMG 通道可以获得最佳分类性能,同时平衡准确性是一个很好的折衷方案。当可用通道数量有限时,还可以在每个数据段之前和之后利用 1 分钟的数据,从而获得最强的改进。作为睡眠专家,我们的系统利用 PSG 信号的多变量和多模态性质,以低计算成本实现最先进的分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验