Suppr超能文献

通过氢化物溶液相路线制备三元ACdP(A = Na,K)纳米结构

Ternary ACdP (A = Na, K) Nanostructures via a Hydride Solution-Phase Route.

作者信息

Medina-Gonzalez Alan M, Yox Philip, Chen Yunhua, Adamson Marquix A S, Svay Maranny, Smith Emily A, Schaller Richard D, Rossini Aaron J, Vela Javier

机构信息

Department of Chemistry Iowa State University, Ames, Iowa 50011, United States.

Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States.

出版信息

ACS Mater Au. 2021 Jul 28;1(2):130-139. doi: 10.1021/acsmaterialsau.1c00018. eCollection 2021 Nov 10.

Abstract

Complex pnictides such as I-II-V compounds (I = alkali metal; II = divalent transition metal; V = pnictide element) display rich structural chemistry and interesting optoelectronic properties, but can be challenging to synthesize using traditional high-temperature solid-state synthesis. Soft chemistry methods can offer control over particle size, morphology, and properties. However, the synthesis of multinary pnictides from solution remains underdeveloped. Here, we report the colloidal hot-injection synthesis of ACdP (A = Na, K) nanostructures from their alkali metal hydrides (AH). Control studies indicate that NaCdP forms from monometallic Cd seeds and not from binary CdP nanocrystals. IR and ssNMR spectroscopy reveal tri-n-octylphosphine oxide (TOPO) and related ligands are coordinated to the ternary surface. Computational studies show that competing phases with space group symmetries 3̅ and differ by only 30 meV/formula unit, indicating that synthetic access to either of these polymorphs is possible. Our synthesis unlocks a new family of nanoscale multinary pnictide materials that could find use in optoelectronic and energy conversion devices.

摘要

复杂的磷化物,如I-II-V化合物(I =碱金属;II =二价过渡金属;V =磷族元素)展现出丰富的结构化学和有趣的光电特性,但使用传统的高温固态合成法进行合成可能具有挑战性。软化学方法能够控制颗粒大小、形态和性质。然而,从溶液中合成多元磷化物的方法仍未得到充分发展。在此,我们报告了由碱金属氢化物(AH)通过胶体热注入法合成ACdP(A = Na、K)纳米结构。对照研究表明,NaCdP由单金属Cd晶种形成,而非由二元CdP纳米晶体形成。红外光谱和固体核磁共振光谱显示,三正辛基氧化膦(TOPO)及相关配体与三元表面配位。计算研究表明,具有空间群对称性3̅ 和 的竞争相之间每个化学式单位仅相差30毫电子伏特,这表明合成这两种多晶型物中的任何一种都是可能的。我们的合成方法开启了一类新的纳米级多元磷化物材料家族,这类材料有望用于光电和能量转换器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc32/9888649/3ea4ef000726/mg1c00018_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验