Suppr超能文献

射血分数保留的心力衰竭的心肌代谢组学。

Myocardial Metabolomics of Human Heart Failure With Preserved Ejection Fraction.

机构信息

Division of Cardiology (V.S.H., S.M., N.K., E.J.Y., D.A.K., K.S.), Johns Hopkins University School of Medicine, Baltimore, MD.

Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.P., M.-S.K., K.C.B., K.B.M., Z.A., D.P.K.).

出版信息

Circulation. 2023 Apr 11;147(15):1147-1161. doi: 10.1161/CIRCULATIONAHA.122.061846. Epub 2023 Mar 1.

Abstract

BACKGROUND

The human heart primarily metabolizes fatty acids, and this decreases as alternative fuel use rises in heart failure with reduced ejection fraction (HFrEF). Patients with severe obesity and diabetes are thought to have increased myocardial fatty acid metabolism, but whether this is found in those who also have heart failure with preserved ejection fraction (HFpEF) is unknown.

METHODS

Plasma and endomyocardial biopsies were obtained from HFpEF (n=38), HFrEF (n=30), and nonfailing donor controls (n=20). Quantitative targeted metabolomics measured organic acids, amino acids, and acylcarnitines in myocardium (72 metabolites) and plasma (69 metabolites). The results were integrated with reported RNA sequencing data. Metabolomics were analyzed using agnostic clustering tools, Kruskal-Wallis test with Dunn test, and machine learning.

RESULTS

Agnostic clustering of myocardial but not plasma metabolites separated disease groups. Despite more obesity and diabetes in HFpEF versus HFrEF (body mass index, 39.8 kg/m versus 26.1 kg/m; diabetes, 70% versus 30%; both <0.0001), medium- and long-chain acylcarnitines (mostly metabolites of fatty acid oxidation) were markedly lower in myocardium from both heart failure groups versus control. In contrast, plasma levels were no different or higher than control. Gene expression linked to fatty acid metabolism was generally lower in HFpEF versus control. Myocardial pyruvate was higher in HFpEF whereas the tricarboxylic acid cycle intermediates succinate and fumarate were lower, as were several genes controlling glucose metabolism. Non-branched-chain and branched-chain amino acids (BCAA) were highest in HFpEF myocardium, yet downstream BCAA metabolites and genes controlling BCAA metabolism were lower. Ketone levels were higher in myocardium and plasma of patients with HFrEF but not HFpEF. HFpEF metabolomic-derived subgroups were differentiated by only a few differences in BCAA metabolites.

CONCLUSIONS

Despite marked obesity and diabetes, HFpEF myocardium exhibited lower fatty acid metabolites compared with HFrEF. Ketones and metabolites of the tricarboxylic acid cycle and BCAA were also lower in HFpEF, suggesting insufficient use of alternative fuels. These differences were not detectable in plasma and challenge conventional views of myocardial fuel use in HFpEF with marked diabetes and obesity and suggest substantial fuel inflexibility in this syndrome.

摘要

背景

人体心脏主要代谢脂肪酸,而在射血分数降低的心力衰竭(HFrEF)中,随着替代燃料的使用增加,这种代谢会减少。患有严重肥胖症和糖尿病的患者被认为心肌脂肪酸代谢增加,但在射血分数保留的心力衰竭(HFpEF)患者中是否存在这种情况尚不清楚。

方法

从 HFpEF(n=38)、HFrEF(n=30)和非衰竭供体对照(n=20)中获取血浆和心肌活检。定量靶向代谢组学测量了心肌(72 种代谢物)和血浆(69 种代谢物)中的有机酸、氨基酸和酰基辅酶 A。结果与报告的 RNA 测序数据相结合。使用无偏聚类工具、Kruskal-Wallis 检验和 Dunn 检验以及机器学习分析代谢组学。

结果

心肌代谢物而不是血浆代谢物的无偏聚类可分离疾病组。尽管 HFpEF 中的肥胖症和糖尿病比 HFrEF 更常见(体重指数,39.8kg/m 比 26.1kg/m;糖尿病,70%比 30%;均<0.0001),但从中HFpEF 和 HFrEF 心脏的中链和长链酰基辅酶 A(主要是脂肪酸氧化的代谢物)明显低于对照组。相比之下,血浆水平与对照组没有差异或更高。与对照组相比,HFpEF 中的脂肪酸代谢相关基因表达通常较低。HFpEF 中的心肌丙酮酸较高,而三羧酸循环中间产物琥珀酸和富马酸较低,控制葡萄糖代谢的几个基因也是如此。非支链和支链氨基酸(BCAA)在 HFpEF 心肌中含量最高,但下游 BCAA 代谢物和控制 BCAA 代谢的基因水平较低。酮体水平在 HFrEF 患者的心肌和血浆中较高,但在 HFpEF 中则不然。HFpEF 代谢组学衍生的亚组仅在少数 BCAA 代谢物上存在差异。

结论

尽管存在明显的肥胖症和糖尿病,但 HFpEF 心肌中的脂肪酸代谢物水平仍低于 HFrEF。酮体和三羧酸循环以及 BCAA 的代谢物也较低,提示替代燃料的使用不足。这些差异在血浆中无法检测到,这对具有明显糖尿病和肥胖症的 HFpEF 中心肌燃料使用的传统观点提出了挑战,并表明该综合征的燃料灵活性存在实质性不足。

相似文献

1
Myocardial Metabolomics of Human Heart Failure With Preserved Ejection Fraction.
Circulation. 2023 Apr 11;147(15):1147-1161. doi: 10.1161/CIRCULATIONAHA.122.061846. Epub 2023 Mar 1.
2
Targeted Metabolomic Profiling of Dapagliflozin in Heart Failure With Preserved Ejection Fraction: The PRESERVED-HF Trial.
JACC Heart Fail. 2024 Jun;12(6):999-1011. doi: 10.1016/j.jchf.2024.02.018. Epub 2024 Apr 17.
3
Depressed Proximal Glycolysis in Myocardium Of Human Heart Failure with Preserved Ejection Fraction.
medRxiv. 2023 Oct 2:2023.09.30.23296261. doi: 10.1101/2023.09.30.23296261.
4
[Similarities and differences of myocardial metabolic characteristics between HFpEF and HFrEF mice based on LC-MS/MS metabolomics].
Zhonghua Xin Xue Guan Bing Za Zhi. 2023 Jul 24;51(7):722-730. doi: 10.3760/cma.j.cn112148-20230329-00182.
6
Myocardial Gene Expression Signatures in Human Heart Failure With Preserved Ejection Fraction.
Circulation. 2021 Jan 12;143(2):120-134. doi: 10.1161/CIRCULATIONAHA.120.050498. Epub 2020 Oct 29.
7
Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction.
Can J Cardiol. 2017 Jul;33(7):860-871. doi: 10.1016/j.cjca.2017.03.009. Epub 2017 Mar 19.
8
Metabolomic fingerprint of heart failure with preserved ejection fraction.
PLoS One. 2015 May 26;10(5):e0124844. doi: 10.1371/journal.pone.0124844. eCollection 2015.

引用本文的文献

1
SGLT2 inhibition, acylcarnitines and heart failure: a Mendelian randomization study.
Open Heart. 2025 Sep 1;12(2):e003078. doi: 10.1136/openhrt-2024-003078.
2
Integrated Systems Biology Identifies Disruptions in Mitochondrial Function and Metabolism as Key Contributors to HFpEF.
JACC Basic Transl Sci. 2025 Aug 15;10(9):101334. doi: 10.1016/j.jacbts.2025.101334.
3
Cracking the Code of a Preclinical Rodent Model of HFpEF: The Mitochondrial Link.
JACC Basic Transl Sci. 2025 Aug 11;10(9):101357. doi: 10.1016/j.jacbts.2025.101357.
5
From Mechanisms to Diseases: The Succinate-GPR91 Axis in Cardiometabolic Diseases.
J Cardiovasc Transl Res. 2025 Jul 24. doi: 10.1007/s12265-025-10670-7.
7
Blueprint of the distinct metabolite profiles of healthy pig heart chambers.
J Mol Cell Cardiol Plus. 2025 Jun 10;13:100462. doi: 10.1016/j.jmccpl.2025.100462. eCollection 2025 Sep.
8
Heterozygous R403Q mutation impairs left atrial mitochondrial function in a Yucatan mini-pig model of genetic nonobstructive hypertrophic cardiomyopathy.
J Appl Physiol (1985). 2025 Jul 1;139(1):265-274. doi: 10.1152/japplphysiol.00339.2025. Epub 2025 Jun 30.

本文引用的文献

1
Integrated landscape of cardiac metabolism in end-stage human nonischemic dilated cardiomyopathy.
Nat Cardiovasc Res. 2022 Sep;1(9):817-829. doi: 10.1038/s44161-022-00117-6. Epub 2022 Aug 29.
2
Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure.
Cell Metab. 2022 Nov 1;34(11):1749-1764.e7. doi: 10.1016/j.cmet.2022.09.008. Epub 2022 Oct 11.
3
Global burden of heart failure: a comprehensive and updated review of epidemiology.
Cardiovasc Res. 2023 Jan 18;118(17):3272-3287. doi: 10.1093/cvr/cvac013.
4
The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial.
Nat Med. 2021 Nov;27(11):1954-1960. doi: 10.1038/s41591-021-01536-x. Epub 2021 Oct 28.
5
Empagliflozin in Heart Failure with a Preserved Ejection Fraction.
N Engl J Med. 2021 Oct 14;385(16):1451-1461. doi: 10.1056/NEJMoa2107038. Epub 2021 Aug 27.
6
Visceral adiposity, muscle composition, and exercise tolerance in heart failure with preserved ejection fraction.
ESC Heart Fail. 2021 Aug;8(4):2535-2545. doi: 10.1002/ehf2.13382. Epub 2021 May 3.
7
Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart.
Nat Commun. 2021 Mar 15;12(1):1680. doi: 10.1038/s41467-021-21962-2.
9
Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association.
Circulation. 2021 Feb 23;143(8):e254-e743. doi: 10.1161/CIR.0000000000000950. Epub 2021 Jan 27.
10
Reduced Right Ventricular Sarcomere Contractility in Heart Failure With Preserved Ejection Fraction and Severe Obesity.
Circulation. 2021 Mar 2;143(9):965-967. doi: 10.1161/CIRCULATIONAHA.120.052414. Epub 2020 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验