Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei, 112, Taiwan.
Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan.
Phys Eng Sci Med. 2023 Jun;46(2):585-596. doi: 10.1007/s13246-023-01234-7. Epub 2023 Mar 1.
The early prediction of overall survival (OS) in patients with lung cancer brain metastases (BMs) after Gamma Knife radiosurgery (GKRS) can facilitate patient management and outcome improvement. However, the disease progression is influenced by multiple factors, such as patient characteristics and treatment strategies, and hence satisfactory performance of OS prediction remains challenging. Accordingly, we proposed a deep learning approach based on comprehensive predictors, including clinical, imaging, and genetic information, to accomplish reliable and personalized OS prediction in patients with BMs after receiving GKRS. Overall 1793 radiomic features extracted from pre-GKRS magnetic resonance images (MRI), clinical information, and epidermal growth factor receptor (EGFR) mutation status were retrospectively collected from 237 BM patients who underwent GKRS. DeepSurv, a multi-layer perceptron model, with 4 different aggregation methods of radiomics was applied to predict personalized survival curves and survival status at 3, 6, 12, and 24 months. The model combining clinical features, EGFR status, and radiomics from the largest BM showed the best prediction performance with concordance index of 0.75 and achieved areas under the curve of 0.82, 0.80, 0.84, and 0.92 for predicting survival status at 3, 6, 12, and 24 months, respectively. The DeepSurv model showed a significant improvement (p < 0.001) in concordance index compared to the validated lung cancer BM prognostic molecular markers. Furthermore, the model provided a novel estimate of the risk-of-death period for patients. The personalized survival curves generated by the DeepSurv model effectively predicted the risk-of-death period which could facilitate personalized management of patients with lung cancer BMs.
肺癌脑转移(BMs)患者伽玛刀放射外科(GKRS)后总生存(OS)的早期预测有助于患者管理和改善预后。然而,疾病进展受到多种因素的影响,如患者特征和治疗策略,因此,准确预测 OS 仍然具有挑战性。因此,我们提出了一种基于综合预测因子的深度学习方法,包括临床、影像学和基因信息,以实现接受 GKRS 治疗后的 BMs 患者可靠和个性化的 OS 预测。共从 237 例接受 GKRS 的 BMs 患者中回顾性收集了 1793 个基于 GKRS 前磁共振成像(MRI)、临床信息和表皮生长因子受体(EGFR)突变状态的放射组学特征。DeepSurv 是一种多层感知器模型,使用 4 种不同的放射组学聚合方法来预测个性化生存曲线和 3、6、12 和 24 个月时的生存状态。结合最大 BMs 的临床特征、EGFR 状态和放射组学的模型具有最佳预测性能,一致性指数为 0.75,并分别为 3、6、12 和 24 个月时的生存状态预测获得了 0.82、0.80、0.84 和 0.92 的曲线下面积。与经过验证的肺癌 BMs 预后分子标志物相比,DeepSurv 模型在一致性指数方面有显著提高(p<0.001)。此外,该模型为患者的死亡风险期提供了新的估计。DeepSurv 模型生成的个性化生存曲线有效地预测了死亡风险期,有助于对肺癌 BMs 患者进行个性化管理。