Department of Electrical, Systems and Automation, Universidad de León, 24007 León, Spain.
Department of Mechanical, Computer Science and Aerospace Engineering, Universidad de León, 24007 León, Spain.
Sensors (Basel). 2019 Mar 1;19(5):1048. doi: 10.3390/s19051048.
This paper presents a new texture descriptor booster, Complete Local Oriented Statistical Information Booster (CLOSIB), based on statistical information of the image. Our proposal uses the statistical information of the texture provided by the image gray-levels differences to increase the discriminative capability of Local Binary Patterns (LBP)-based and other texture descriptors. We demonstrated that Half-CLOSIB and M-CLOSIB versions are more efficient and precise than the general one. H-CLOSIB may eliminate redundant statistical information and the multi-scale version, M-CLOSIB, is more robust. We evaluated our method using four datasets: KTH TIPS (2-a) for material recognition, UIUC and USPTex for general texture recognition and JAFFE for face recognition. The results show that when we combine CLOSIB with well-known LBP-based descriptors, the hit rate increases in all the cases, introducing in this way the idea that CLOSIB can be used to enhance the description of texture in a significant number of situations. Additionally, a comparison with recent algorithms demonstrates that a combination of LBP methods with CLOSIB variants obtains comparable results to those of the state-of-the-art.
本文提出了一种新的纹理描述符增强器,即完全局部定向统计信息增强器(CLOSIB),它基于图像的统计信息。我们的方法利用图像灰度级差异提供的纹理统计信息,来提高基于局部二值模式(LBP)和其他纹理描述符的判别能力。实验表明,半 CLOSIB 和 M-CLOSIB 版本比通用版本更有效和精确。H-CLOSIB 可以消除冗余的统计信息,而多尺度版本 M-CLOSIB 则更加稳健。我们使用四个数据集评估了我们的方法:KTH TIPS(2-a)用于材料识别,UIUC 和 USPTex 用于一般纹理识别,JAFFE 用于人脸识别。结果表明,当我们将 CLOSIB 与知名的基于 LBP 的描述符结合使用时,在所有情况下的命中率都有所提高,从而引入了这样一种观点,即 CLOSIB 可以用于增强许多情况下的纹理描述。此外,与最近的算法进行比较表明,将 LBP 方法与 CLOSIB 变体结合起来,可以获得与最新技术相当的结果。