Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing, 100025, China.
Eur Radiol Exp. 2024 Jan 2;8(1):2. doi: 10.1186/s41747-023-00396-z.
To establish a predictive model based on multisequence magnetic resonance imaging (MRI) using deep learning to identify wild-type (WT) epidermal growth factor receptor (EGFR), EGFR exon 19 deletion (19Del), and EGFR exon 21-point mutation (21L858R) simultaneously.
A total of 399 patients with proven brain metastases of non-small cell lung cancer (NSCLC) were retrospectively enrolled and divided into training (n = 306) and testing (n = 93) cohorts separately based on two timepoints. All patients underwent 3.0-T brain MRI including T2-weighted, T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and contrast-enhanced T1-weighted sequences. Radiomics features were extracted from each lesion based on four sequences. An algorithm combining radiomics approach with graph convolutional networks architecture (Radio-GCN) was designed for the prediction of EGFR mutation status and subtype. The area under the curve (AUC) at receiver operating characteristic analysis was used to evaluate the predication capabilities of each model.
We extracted 1,290 radiomics features from each MRI sequence. The AUCs of the Radio-GCN model for identifying EGFR 19Del, 21L858R, and WT for the lesion-wise analysis were 0.996 ± 0.004, 0.971 ± 0.013, and 1.000 ± 0.000 on the independent testing cohort separately. It also yielded AUCs of 1.000 ± 0.000, 0.991 ± 0.009, and 1.000 ± 0.000 for predicting EGFR mutations respectively for the patient-wise analysis. The κ coefficients were 0.735 and 0.812, respectively.
The constructed Radio-GCN model is a new potential tool to predict the EGFR mutation status and subtype in NSCLC patients with brain metastases.
The study demonstrated that a deep learning approach based on multisequence MRI can help to predict the EGFR mutation status in NSCLC patients with brain metastases, which is beneficial to guide a personalized treatment.
• This is the first study to predict the EGFR mutation subtype simultaneously. • The Radio-GCN model holds the potential to be used as a diagnostic tool. • This study provides an imaging surrogate for identifying the EGFR mutation subtype.
建立一个基于多序列磁共振成像(MRI)的深度学习预测模型,以同时识别野生型(WT)表皮生长因子受体(EGFR)、EGFR 外显子 19 缺失(19Del)和 EGFR 外显子 21 点突变(21L858R)。
回顾性纳入 399 例经证实的非小细胞肺癌(NSCLC)脑转移患者,根据两个时间点分别分为训练(n=306)和测试(n=93)队列。所有患者均行 3.0T 颅脑 MRI 检查,包括 T2 加权、T2 加权液体衰减反转恢复、弥散加权成像和对比增强 T1 加权序列。基于 4 个序列从每个病灶中提取放射组学特征。设计了一种结合放射组学方法和图卷积网络架构(Radio-GCN)的算法,用于预测 EGFR 突变状态和亚型。受试者工作特征分析的曲线下面积(AUC)用于评估每个模型的预测能力。
从每个 MRI 序列中提取了 1290 个放射组学特征。在独立测试队列中,用于识别 EGFR 19Del、21L858R 和 WT 的 Radio-GCN 模型的 AUC 分别为 0.996±0.004、0.971±0.013 和 1.000±0.000。对于患者水平分析,分别预测 EGFR 突变的 AUC 为 1.000±0.000、0.991±0.009 和 1.000±0.000。κ 系数分别为 0.735 和 0.812。
构建的 Radio-GCN 模型是一种新的潜在工具,可用于预测 NSCLC 脑转移患者的 EGFR 突变状态和亚型。
本研究表明,基于多序列 MRI 的深度学习方法有助于预测 NSCLC 脑转移患者的 EGFR 突变状态,有利于指导个体化治疗。
• 这是第一项同时预测 EGFR 突变亚型的研究。• Radio-GCN 模型有可能成为一种诊断工具。• 本研究为识别 EGFR 突变亚型提供了影像学替代指标。