Ollitrault Pauline J, Mazzola Guglielmo, Tavernelli Ivano
IBM Quantum, IBM Research-Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
Phys Rev Lett. 2020 Dec 31;125(26):260511. doi: 10.1103/PhysRevLett.125.260511.
The theoretical investigation of nonadiabatic processes is hampered by the complexity of the coupled electron-nuclear dynamics beyond the Born-Oppenheimer approximation. Classically, the simulation of such reactions is limited by the unfavorable scaling of the computational resources as a function of the system size. While quantum computing exhibits proven quantum advantage for the simulation of real-time dynamics, the study of quantum algorithms for the description of nonadiabatic phenomena is still unexplored. In this Letter, we propose a quantum algorithm for the simulation of fast nonadiabatic chemical processes together with an initialization scheme for quantum hardware calculations. In particular, we introduce a first-quantization method for the time evolution of a wave packet on two coupled harmonic potential energy surfaces (Marcus model). In our approach, the computational resources scale polynomially in the system dimensions, opening up new avenues for the study of photophysical processes that are classically intractable.
非绝热过程的理论研究受到超越玻恩-奥本海默近似的电子-核耦合动力学复杂性的阻碍。传统上,此类反应的模拟受到计算资源随系统大小呈不利缩放的限制。虽然量子计算在实时动力学模拟方面已展现出量子优势,但用于描述非绝热现象的量子算法研究仍未被探索。在本信函中,我们提出了一种用于模拟快速非绝热化学过程的量子算法以及一种用于量子硬件计算的初始化方案。特别地,我们引入了一种一阶量子化方法来处理两个耦合谐振子势能面(马库斯模型)上波包的时间演化。在我们的方法中,计算资源在系统维度上呈多项式缩放,为研究传统上难以处理的光物理过程开辟了新途径。